Search Results

You are looking at 1 - 10 of 45 items for :

  • "(±)-Atenolol" x
  • Refine by Access: All Content x
Clear All

Abstract  

An adopted method for the preparation of high radiochemical purity 125I-atenolol was investigated. Direct radioiodination of atenolol was carried out using N-bromosuccinamide or hydrogen peroxide as an oxidizing agent. The reaction proceeds well within 30 min at room temperature (25 ± 1 °C) and afforded a radiochemical yield up to 97% as pure as 125I-atenolol. Different chromatographic techniques (electrophoresis, TLC and HPLC) were used to determine the radiochemical yield and purity of the labeled product. Biodistribution studies were carried out in normal Albino Swiss mice and the results indicate that 125I-atenolol can be used safely as myocardial imaging agent.

Restricted access

Summary

A new simple, precise, accurate, and selective thin-layer chromatographic (TLC) method has been developed for simultaneous analysis of atenolol and lercanidipine hydrochloride in a tablet dosage form. Chromatographic separation was achieved on aluminum foil plates precoated with silica gel 60F254, with toluene-methanoltriethylamine 3.5:1.5:0.1 (v/v) as mobile phase. Detection was performed densitometrically at 275 nm. The R F of atenolol and lercanidipine hydrochloride were 0.24 and 0.68, respectively. The reliability of the method was assessed by evaluation of linearity (2000–12000 ng per band for atenolol and 400–2400 ng per band for lercanidipine hydrochloride), accuracy (98.94 ± 0.30% for atenolol and 99.75 ± 0.69% for lercanidipine hydrochloride), and specificity, in accordance with ICH guidelines. The method can be used for routine simultaneous analysis of atenolol and lercanidipine hydrochloride in pharmaceutical formulations.

Full access

Summary

Enantiomeric resolution of two commonly used β-blockers, namely, (±)-propranolol and (±)-atenolol, has been achieved on silica gel layers which were bulkimpregnated with β-cyclodextrin. Solvent systems DMF-ethyl acetate-butanol (3:2:5, υ/υ) and butanol-acetic acid-ethyl acetate-ammonia (5:2:2:0.5, υ/υ) successfully resolved the enantiomers of (±)-propranolol and (±)-atenolol, respectively. The spots were located with iodine vapor. The effects of concentration of the chiral selector and mobile phase variation were also studied.

Full access

Abstract  

We apply a range of techniques (thermal methods, microscopy, X-ray diffraction, IR spectroscopy) to characterize a drug (atenolol), several excipients (PVP=polyvinylpyrrolidone, MGST=magnesium stearate, Avicel©) and drug-excipients mixtures either as prepared, annealed, and exposed to moisture. We compare the data of the mixtures with those computed from a weighted average of similarly treated pure compounds to find evidence of drug properties modified by the interaction with the excipient. We find that thermal response is by far the most sensitive indicator of interaction while IR is the least sensitive one. Avicel© has essentially no interaction with atenolol, while MGST modifies significantly only the thermal response of the drug in the MGST-rich mixtures. PVP interacts strongly with atenolol, and this interaction appears to be mediated by the substantial amount of hydration water the excipient brings in its mixtures with a water-free drug.

Restricted access
Acta Chromatographica
Authors: A. B. Thomas, U. B. Chavan, R. K. Nanda, L. P. Kothapalli, S. N. Jagdale, S. B. Dighe, and A. D. Deshpande

Summary

Simultaneous analysis of atenolol (Atn), hydrochlorothiazide (Hctz) and losartan potassium (Los) in solid dosage forms has been achieved by reversed-phase high-performance liquid chromatography on a C18 column with a 0.035 M potassium dihydrogen orthophosphate-acetonitrile gradient as mobile phase and UV detection at 225 nm. The retention times for Atn, Hctz, and Los were 2.91, 4.75, and 7.52 min, respectively, with mean recoveries of 99.67, 99.89, and 100.69%. The method was validated in accordance with ICH guidelines. Because of its simplicity and high precision and accuracy, the method can be used for analysis of atenolol, hydrochlorothiazide and losartan potassium in pharmaceutical preparations.

Full access

Pharmaceutical industry concerned recently with eco-friendly analytical methods to reduce the environmental pollution. The using of toxic organic solvents for the analysis of drugs is critical. In the current work, several simple and less costly approaches such as micellar and/or cyclodextrin liquid chromatography were discussed. A new eco-friendly and simple chromatographic analysis of the ternary mixture of amiloride hydrochloride (AM), atenolol (AT), and hydrochlorothiazide (HZ) in urine by hydroxypropyl-beta-cyclodextrin (HP-β-CD) bonded stationary phase was investigated. The experimental conditions were optimized and validated based on International Conference on Harmonization (ICH) Q2R1 guidelines to detect analytes by isocratic mobile phase of phosphate buffer (5.0 mmol L−1, pH 7.0) in the presence of 0.5 mL min−1 flow rate, 25.0 °C, and 280 nm. Linearity, accuracy, and precision were found to be acceptable over the concentration range of 0.05–20.0 μg mL−1 for AM, 0.05–50.0 μg mL−1 for AT and 0.05–50.0 μg mL−1 for HZ. The proposed method was precise, selective, and sensitive enough for the routine analysis of ternary mixture at therapeutic urine levels. The inclusion complexation and the appendant hydroxyl groups of HP-β-CD were considered the main reasons for assisting in adequate separation of the drugs. On the other hand, the presence of kosmotropic phosphate ions could solubilize the protein and could strengthen the selective inclusion of drugs inside HP-β-CD cavity. Urinary excretion studies showed that the detection of drugs is possible up to 24 h after their ingestion.

Open access

This work aims at studying the possible alteration of renal renin secretion after human ischemic stroke and correlating it to the post stroke neurological and renal function alterations using angiotensin II type 1(AT1) receptor blocker (ARB), candesartan, and β 1 adrenoreceptor blocker atenolol, which inhibits renin secretion, in Wistar rats subjected to middle cerebral artery occlusion. Methods . This study comprised 21 patients with cerebral ischemic stroke. Seventeen normal persons were used for comparison. Recumbent and standing plasma renin activity (PRA), reflex plasma renin sensitivity, plasminogen activator inhibitor and creatinine clearance (Ccr) were estimated at admission and two weeks later. Moreover, 60 male Wistar rats were divided into two groups SHAM and ischemic. Each of the two groups was further subdivided into three subgroups, non-treated, atenolol treated, and candesartan treated. In all rats, mean arterial blood pressure (MAP), systolic blood pressure (SBP), diastolic blood pressure (DBP), pulse pressure (PP), heart rate (HR), neurobehavioral evaluation, Ccr, PRA, and infarct size were measured. Results . Together with the significant deterioration of the neurological score, focal cerebral ischemia in rats resulted in increased PRA and decreased glomerular filtration rate (GFR). In ischemic stroke patients, GFR was significantly decreased at admission and two weeks later, PRA increased at admission and two weeks later while plasma renin reflex secretion sensitivity had decreased significantly at admission relative to controls, but it increased significantly 2 weeks later. Atenolol caused significant improvement of the neurobehavioral score and renal function and decrease infarct size of rats subjected to focal cerebral ischemia whereas candesartan caused significant improvement of the neurobehavioral score and decreased infarct size with no significant change in GFR. Neither atenolol nor candesartan caused significant change in MAP, SBP, DBP, PP and HR Conclusion . (1) Ischemic stroke seems to be associated with a postischemic increase of the plasma renin secretion, which may increase the infarct size in the brain and may induce acute renal insufficiency. (2) This study confirms that Atenolol and ARBs could benefit ischemic stroke patients without altering blood pressure.

Restricted access

The objective of this study was to develop and validate an assay method for simultaneous determination of atenolol, furosemide, losartan, and spironolactone in pharmaceutical formulations. A reverse-phase high-performance liquid chromatography procedure was developed, using a Kinetex® C-18 column (100 mm × 4.6 mm, 2.6 μm). The mobile phase was composed of methanol—water (75:25 v/v, pH 3.0, adjusted with phosphoric acid), with a flow rate of 0.4 mL min−1. All drugs were separated in less than 5 min. The method was validated according to International Conference on Harmonization (ICH) and Association of Official Analytical Chemists (AOAC) guidelines. The method showed linearity in a concentration range of 0.75–12.0 μg mL−1 for atenolol (r = 0.9995), 0.30–12.00 μg mL−1 for furosemide (r = 0.9997), 0.45–12.00 μg mL−1 for losartan (r = 0.9995), and 0.45–12.0 μg mL−1 for spironolactone (r = 0.9999). The method also showed repeatability and precision. The three-day average intra-day precisions were 101.35 ± 0.74% for atenolol, 95.84 ± 1.44% for furosemide, 98.90 ± 1.16% for losartan, and 97.19 ± 0.18% for spironolactone. Similarly, the inter-day precisions were 101.34 ± 0.72% for atenolol, 95.84 ± 0.1.50% for furosemide, 98.90 ± 1.17% for losartan, and 97.19 ± 0.83% for spironolactone. The method accuracy was also tested and validated — in this case, the average recovery values were 100.18 ± 1.20% for atenolol, 99.83 ± 1.54% for furosemide, 100.07 ± 0.95% for losartan, and 99.94 ± 0.93% for spironolactone. Finally, the method was successfully applied in the simultaneous determination of atenolol, furosemide, losartan, and spironolactone in magisterial formulas, as well as in commercial pharmaceutical formulations.

Open access

Abstract  

Osmotically controlled and oral drug delivery systems utilize osmotic pressure for controlled delivery of active agent(s). Drug delivery from these systems, to a large extent, is independent of the physiological factors of the gastrointestinal tract and these systems can be utilized for systemic as well as targeted delivery of drugs. We apply the thermal methods and IR spectroscopy to study compatibility between atenolol and several excipients usually found in the osmotic systems formulations (Polyethylene oxide, MW 3350, 100000, 200000 and 5000000; HPMC K4000, magnesium stearate and cellulose acetate. Cellulose acetate, HPMC K4000 and magnesium stearate have essentially no interaction with atenolol otherwise all Polyethylene oxide excipients modifies significantly the drug melting point indicating some extend of interaction.

Restricted access