Search Results

You are looking at 1 - 10 of 20 items for :

  • "γ-Alumina" x
  • Refine by Access: All Content x
Clear All

report for the application of MPc supported on γ-alumina for partial oxidation of cyclohexane with H 2 O 2 and TBHP. In this work, Fe, Mn and CoPc supported on γ-alumina were reported as catalysts for aerobic oxidation of cyclohexane to cyclohexanol and

Restricted access

Abstract  

LIII edge X-ray Absorption Fine Structure (XAFS) spectroscopic study of Eu(III) sorbed on γ-alumina from aqueous solutions of different pH (values ranging from 6 to 8) has been carried out at XAFS beam line of Elettra Synchrotron facility, Italy, in transmission mode. Extended X-ray Absorption Fine Structure spectra of reference compounds, namely, Eu2O3, Eu(OH)3 and Eu-aquo complex in solution, were also measured. The data were analyzed using the IFEFFIT suite of code. XAFS spectra of the sorption samples is dominated by the Eu–O near neighbor co-ordination at distance 2.4 ± 0.1 Å. 8–9 oxygen atoms, coming from both coordinating water molecule and oxygen atoms from alumina surface, surround the Eu(III) in the surface complex. Next near neighbor atoms in all the sorption samples consist of Al at distance ~3.6 and 3.8 Å, which on comparison with literature data indicates towards Eu(III) bidentate binding to apical oxygen of two different alumina octahedra on γ-alumina surface.

Restricted access

, deviation was generated. In the present work, we investigated the kinetics of the process from natural aspects. Water produced was not removed and γ -alumina without drying was chosen as the catalyst, making the reaction a reversible one and

Restricted access

Abstract  

The oxidation of alcohols with tert-butylhydroperoxide, in the presence of metallophthalocyanines supported on γ-alumina was investigated. These metallophthalocyanines supported on γ-alumina were effective catalysts for the oxidation of alcohols such as cyclohexanol, benzyl alcohol and hexanol.

Restricted access
Reaction Kinetics, Mechanisms and Catalysis
Authors: Viorel Chihaia, Karl Sohlberg, M. Scurtu, C. Hornoiu, M. Caldararu, C. Munteanu, G. Postole, N. I. Ionescu, T. Yuzhakova, and A. Redey

surface area like γ-alumina. Supported oxides are widely used in catalysis, the high surface area support allows the dispersion of the active phase significantly increases the extent of interaction with gaseous reactants and also improves stability under

Restricted access

Abstract  

Gamma-alumina membrane was prepared from anodic (amorphous) alumina (AA) obtained in a sulphuric acid electrolyte. The transformation scheme, i.e., the crystallization to form metastable alumina polymorphs and the final transition to α-Al2O3 with heating was studied by TG-DTA and X-ray diffraction (XRD) using fixed time (FT) method. When heating at a constant rate, the crystallization occurred at 900C or higher and the final formation of α-Al2O3 occurred at 1250C or higher, which temperatures were higher than the case of using anodic (amorphous) alumina prepared from oxalic acid electrolyte. Relative content of S of the products was obtained by transmission electron microscope (TEM)-energy dispersive spectroscopy (EDS). The proposed thermal change of anodic alumina membrane prepared from sulphuric acid is as follows: 1. At temperatures lower than ca 910C: Formation of a quasi-crystalline phase or a polycrystalline phase (γ-, δ- and θ-Al2O3); 2. 910–960C: Progressive crystallization by the migration of S toward the surface within the amorphous or the quasi-crystalline phase, forming S-rich region near the surface; 3. 960C: Change of membrane morphology and the quasi-crystalline phase due to the rapid discharge of gaseous SO2; 4. 960–1240C: Crystallization of γ-Al2O3 accompanying δ-Al2O3; and 5. 1240C: Transition from γ-Al2O3 (+tr. δ-Al2O3) into the stable α-Al2O3. The amorphization which occurs by the exothermic and the subsequent endothermic reaction suggests the incorporation of SO3 groups in the quasi-crystalline structure.

Restricted access

Abstract  

The catalytic conversion of isopropanol was conducted over a poorly crystalline -alumina irradiated with different doses of -rays (25–150 Mrad). The catalytic reaction was carried out at 180–400°C in a flow technique under atmospheric pressure. The results showed that the dose of 25 Mrad resulted in a decrease of about 50% of the dehydration activity which suffered a further slight decrease upon irradiation at a dose of 50 Mrad. Increasing the dose in the range of 50–150 Mrad effected an increase in the dehydration activity reaching a maximum limit at 100 Mrad, then decreased abruptly by a dose of 150 Mrad. -irradiation led also to creation of some active sites contributing in dehydrogenation of isopropanol to producing acetone. These results were discussed in terms of removal of Brönsted acidity (25–50 Mrad), responsible for the dehydration reaction and to transformation of Lewis to Brönsted acidity (100 Mrad) by the action of liberated water from the dehydration reaction. The drop in dehydration activity due to irradiation at 150 Mrad might result from an efficient removal of the Brönsted acid sites created. The induced dehydrogenation activity of irradiated aluminas was attributed to creation of some electron-donor centers.

Restricted access

Abstract  

The acid-base character of vanadium pentoxide, V2O5/SiO2 and V2O5/γ-Al2O3 catalysts has been investigated by adsorption of ammonia and sulphur dioxide using microcalorimetry. By depositing vanadium oxide on silica; new surface sites are formed which present more acid strength than bulk vanadium pentoxide and pure silica. Alumina-supported vanadium catalysts can be regarded as acidic monolayers VOx. Sulphur dioxide was found to be selective for uncovered alumina.

Restricted access

Abstract  

The removal of heavy metal ion Co(II) from aqueous solution is studied using γ-Al2O3 by batch technique. The experiments are performed at T = 20 ± 2 °C, in 0.01 M NaNO3 solutions and under aerobic conditions. The effect of pH, ionic strength, fulvic acid (FA) and alumina concentration on the sorption of Co(II) on alumina are also respectively investigated. The pH affects the sorption of Co(II) significantly as compared with the effect of FA and ionic strength. The results indicate that strong chemical bonds are formed between Co(II) and the bare or FA coated alumina surface, and a transition from the adsorption to surface-induced precipitation of Co(II) on alumina surface takes place. The addition sequences of Co/FA on Co(II) sorption is also studied and the results indicate that the sorption of Co(II) in ternary system is independent of addition sequences. The results also suggest that the sorption of metal ions on mineral surface depends on the nature of mineral, nature of organic ligand and nature of metal ion.

Restricted access
Reaction Kinetics, Mechanisms and Catalysis
Authors: Viorel Chihaia, Karl Sohlberg, Karl Sohlberg, and Niculae I. Ionescu

of surface conduction on γ-alumina . J Phys Chem C 111 14 5506 – 5513 10.1021/jp068817n . 4. Cai , S , Caldararu , M , Sohlberg , K 2010 Entropic contributions to the atomic

Restricted access