Search Results

You are looking at 1 - 2 of 2 items for :

  • All content x
Clear All

Abstract  

The basis number of a graph G is defined to be the least positive integer d such that G has a d-fold basis for the cycle space of G. We investigate the basis number of the cartesian product of stars and wheels with ladders, circular ladders and Möbius ladders.

Restricted access

Abstract  

On path partitions of the divisor graph. Let D(x) be the graph with vertices {1, 2, ..., ⌊x⌋} whose edges come from the division relation, and let D(x, y) be the subgraph restricted to the integers with prime factors less than or equal to y. We give sufficient conditions on x and y for the graph D(x, y) to be Hamiltonian. We deduce an asymptotic formula for the number of paths in D(x) needed to partition the set of vertices {1, 2, ..., ⌊x⌋}.

Restricted access