Search Results

You are looking at 1 - 3 of 3 items for :

  • All content x
Clear All

Abstract  

A. Fujii, and later J. Steuding, considered an asymptotic formula for the sum of values of the Dirichlet L-function taken at the nontrivial zeros of another Dirichlet L-function. Here we improve the error term of this asymptotic formula.

Restricted access

Abstract  

Some new results on power moments of the integral
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$J_k (t,G) = \frac{1} {{\sqrt {\pi G} }}\int_{ - \infty }^\infty { \left| {\varsigma \left( {\tfrac{1} {2} + it + iu} \right)} \right|^{2k} } e^{ - (u/G)^2 } du$$ \end{document}
(tT, T ɛGT, κ ∈ N) are obtained when κ = 1. These results can be used to derive bounds for moments of
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\left| {\varsigma \left( {\tfrac{1} {2} + it} \right)} \right|$$ \end{document}
.
Restricted access

Abstract

For the Riemann zeta-function we present an asymptotic formula of a shifted fourth moment in an unbounded shift range along the critical line.

Restricted access