Search Results

You are looking at 1 - 10 of 10 items for :

  • Refine by Access: All Content x
Clear All

Abstract  

We prove that whenever
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{A}$$ \end{document}
and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{B}$$ \end{document}
are dense enough subsets of {1, ..., N}, there exist a
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{A}$$ \end{document}
and b
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{B}$$ \end{document}
such that the greatest prime factor of ab + 1 is at least
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$N^{1 + |\mathcal{A}|/(9N)}$$ \end{document}
.
Restricted access

Let P r denote an almost-prime with at most r prime factors, counted according to multiplicity, and let E 3(N) denote the number of natural numbers not exceeding N that are congruent to 4 modulo 24 yet cannot be represented as the sum of three squares of primes and the square of one P 5. Then we have E 3(N)≪log1053 N. This result constitutes an improvement upon that of D. I. Tolev, who obtained the same bound, but with P 11 in place of P 5.

Restricted access
Let P r denote an almost-prime with at most r prime factors, counted according to multiplicity. In this paper we show that the inequality
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\left\{ {\sqrt p } \right\} < p^{ - \tfrac{1} {{15.5}}}$$ \end{document}
has infinitely many solutions in primes p such that p + 2 = P 4.
Restricted access

Abstract  

We sharpen Hua’s result by proving that each sufficiently large odd integer N can be written as

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$N = p_1^3 + \cdots + p_9^3 with \left| {p_j - \sqrt[3]{{N/9}}} \right| \leqq U = N^{\tfrac{1} {3} - \tfrac{1} {{198}} + \varepsilon }$$ \end{document}
, where p j are primes. This result is as good as what was previously derived from the Generalized Riemann Hypothesis.

Restricted access

Abstract  

Combining Goldston-Yildirim’s method on k-correlations of the truncated von Mangoldt function with Maier’s matrix method, we show that
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Xi _r : = \lim \inf _{n \to \infty } \tfrac{{p_{n + r} - p_n }} {{\log p_n }} \leqq e^{ - \gamma } \left( {r - \tfrac{{\sqrt r }} {2}} \right)$$ \end{document}
for all r ≧ 1 where p n denotes the nth prime number and γ is Euler’s constant. This is the best known result for any r ≧ 11.
Restricted access

Abstract  

We prove that almost all integers N satisfying some necessary congruence conditions are the sum of j almost equal prime cubes with j = 5; 6; 7; 8, i.e., N = p 1 3 + ... + p j 3 with |p i − (N/j)1/3| ≦
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$N^{1/3 - \delta _j + \varepsilon }$$ \end{document}
(1 ≦ ij), for δ j = 1/45; 1/30; 1/25; 2/45, respectively.
Restricted access

Abstract  

We sharpen Hua’s theorem with five squares of primes by proving that every sufficiently large integer N congruent to 5 modulo 24 can be written in the form
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$N = p_1^2 + p_2^2 + p_3^2 + p_4^2 + p_5^2$$ \end{document}
with p 1
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$N^{\tfrac{{49}} {{288}}}$$ \end{document}
.
Restricted access

Abstract  

We show that for every fixed A > 0 and θ > 0 there is a ϑ = ϑ(A, θ) > 0 with the following property. Let n be odd and sufficiently large, and let Q 1 = Q 2:= n 1/2(log n)ϑ and Q 3:= (log n) θ . Then for all q 3Q 3, all reduced residues a 3 mod q 3, almost all q 2Q 2, all admissible residues a 2 mod q 2, almost all q 1Q 1 and all admissible residues a 1 mod q 1, there exists a representation n = p 1 + p 2 + p 3 with primes p i a i (q i ), i = 1, 2, 3.

Restricted access

Abstract  

Les propriétés multiplicatives des nombres ellipséphiques peuvent être obtenues à l’aide des moments de la série génératrice de cette suite. Nous donnons des estimations précises pour les grands moments par deux méthodes distinctes: l’une combinatoire fournit un résultat précis dans le cas réputé le plus difficile des nombres n’utilisant que les 0 et les 1; la seconde purement analytique fournit un résultat sans condition sur les chiffres.

Restricted access

Abstract

Let denote the set {n∣2|n, ∀ p>2 with p−1|k}. We prove that when , almost all integers can be represented as the sum of a prime and a k-th power of prime for k≧3. Moreover, when , almost all integers n∊(X,X+H] can be represented as the sum of a prime and a k-th power of integer for k≧3.

Restricted access