Search Results

You are looking at 1 - 8 of 8 items for :

  • Refine by Access: All Content x
Clear All

Abstract  

For positive constants a > b > 0, let P T (t) denote the lattice point discrepancy of the body tT a,b , where t is a large real parameter and T = T a,b is bounded by the surface

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\partial \tau _{a,b} :\left( {\begin{array}{*{20}c} x \\ y \\ z \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} {(a + b\cos \alpha )\cos \beta } \\ {(a + b\cos \alpha )\sin \beta } \\ {b\sin \alpha } \\ \end{array} } \right), 0 \leqq \alpha ,\beta < 2\pi .$$ \end{document}
In a previous paper [12] it has been proved that
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$P_\tau (t) = \mathcal{F}_{a,b} (t)t^{3/2} + \Delta _\tau (t),$$ \end{document}
where F a,b (t) is an explicit continuous periodic function, and the remainder satisfies the (“pointwise”) estimate Δ T (t) ≪ t 11/8+ɛ . Here it will be shown that this error term is only ≪ t 1+ɛ in mean-square, i.e., that
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\int\limits_0^T {(\Delta _\tau (t))^2 dt} \ll T^{3 + \varepsilon }$$ \end{document}
for any ɛ > 0.

Restricted access

Abstract  

This article provides an asymptotic formula for the number of integer points in the three-dimensional body

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\left( \begin{gathered} x \hfill \\ y \hfill \\ z \hfill \\ \end{gathered} \right) = t\left( \begin{gathered} (a + r\cos \alpha )\cos \beta \hfill \\ (a + r\cos \alpha )\sin \beta \hfill \\ r\sin \alpha \hfill \\ \end{gathered} \right),0 \leqq \alpha ,\beta < 2\pi ,0 \leqq r \leqq b,$$ \end{document}
for fixed a > b > 0 and large t.

Restricted access

Abstract

We improve the upper bound for the lattice point discrepancy of large spheres under conjectural properties of the real L-functions. In connection with this we give some new unconditional estimates for exponential and character sums of independent interest.

Restricted access

Abstract

This paper provides estimates for exponential sums, combining classic tools of Van der Corput type with a deep result from the modern “discrete Hardy–Littlewood method”. As an application, an improved bound for the lattice point discrepancy of a large ellipsoid of rotation is deduced.

Restricted access

Abstract  

We prove that the “quadratic irrational rotation” exhibits a central limit theorem. More precisely, let α be an arbitrary real root of a quadratic equation with integer coefficients; say, . Given any rational number 0 < x < 1 (say, x = 1/2) and any positive integer n, we count the number of elements of the sequence α, 2α, 3α, ..., modulo 1 that fall into the subinterval [0, x]. We prove that this counting number satisfies a central limit theorem in the following sense. First, we subtract the “expected number” nx from the counting number, and study the typical fluctuation of this difference as n runs in a long interval 1 ≤ nN. Depending on α and x, we may need an extra additive correction of constant times logarithm of N; furthermore, what we always need is a multiplicative correction: division by (another) constant times square root of logarithm of N. If N is large, the distribution of this renormalized counting number, as n runs in 1 ≤ nN, is very close to the standard normal distribution (bell shaped curve), and the corresponding error term tends to zero as N tends to infinity. This is the main result of the paper (see Theorem 1.1).

Restricted access

Abstract  

We prove that the “quadratic irrational rotation” exhibits a central limit theorem. More precisely, let α be an arbitrary real root of a quadratic equation with integer coefficients; say, α =
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\sqrt 2$$ \end{document}
. Given any rational number 0 < x < 1 (say, x = 1/2) and any positive integer n, we count the number of elements of the sequence α, 2α, 3α, …, modulo 1 that fall into the subinterval [0, x]. We prove that this counting number satisfies a central limit theorem in the following sense. First, we subtract the “expected number” nx from the counting number, and study the typical fluctuation of this difference as n runs in a long interval 1 ≤ nN. Depending on α and x, we may need an extra additive correction of constant times logarithm of N; furthermore, what we always need is a multiplicative correction: division by (another) constant times square root of logarithm of N. If N is large, the distribution of this renormalized counting number, as n runs in 1 ≤ nN, is very close to the standard normal distribution (bell shaped curve), and the corresponding error term tends to zero as N tends to infinity. This is the main result of the paper (see Theorem 1.1). The proof is rather complicated and long; it has many interesting detours and byproducts. For example, the exact determination of the key constant factors (in the additive and multiplicative norming), which depend on α and x, requires surprisingly deep algebraic tools such as Dedeking sums, the class number of quadratic fields, and generalized class number formulas. The crucial property of a quadratic irrational is the periodicity of its continued fraction. Periodicity means self-similarity, which leads us to Markov chains: our basic probabilistic tool to prove the central limit theorem. We also use a lot of Fourier analysis. Finally, I just mention one byproduct of this research: we solve an old problem of Hardy and Littlewood on diophantine sums. The whole paper consists of an introduction and 17 sections. Part 1 contains the Introduction and Sections 1–7.
Restricted access

parentheses. Wald statistic cannot be used for testing the significance of sigma, p11, p21 and then stars for these parameters were omitted. Sources: LFS, CSO and own calculation. Fig. C1. Probability of state 1. Appendix D. Estimation of the “gap” equation

Restricted access