Search Results

You are looking at 1 - 2 of 2 items for :

  • Refine by Access: All Content x
Clear All

Abstract  

Let f be a primitive positive integral binary quadratic form of discriminant −D, and r f (n) the number of representations of n by f up to automorphisms of f. We first improve the error term E(x) of
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\sum\limits_{n \leqq x} {r_f (n)^\beta }$$ \end{document}
for any positive integer β. Next, we give an estimate of ∫1 T|E(x)|2 x −3/2 dx when β = 1.
Restricted access

Abstract  

By using p-adic q-deformed fermionic integral on ℤp, we construct new generating functions of the twisted (h, q)-Euler numbers and polynomials attached to a Dirichlet character χ. By applying Mellin transformation and derivative operator to these functions, we define twisted (h, q)-extension of zeta functions and l-functions, which interpolate the twisted (h, q)-extension of Euler numbers at negative integers. Moreover, we construct the partially twisted (h, q)-zeta function. We give some relations between the partially twisted (h, q)-zeta function and twisted (h, q)-extension of Euler numbers.

Restricted access