Search Results

You are looking at 1 - 3 of 3 items for :

Clear All

Abstract  

Using the correspondence x↔ cos θ, where −1≤x ≤ 1 and 0 ≤ θ ≤ π, a function f(x) defined on [−1, 1] can be represented as a 2π-periodic function F(θ), and then the derivative f′(x) corresponds to

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\frac{{F^1 (\theta )}}{{ - \sin \theta }}$$ \end{document}
. From these observations, weighted-norm estimates for first and higher derivatives by x will be obtained, using a generalized Hardy inequality. The results in turn imply the generalized Hardy inequality upon which they depend and will hold true in any weighted norm for which the generalized Hardy is true.

Restricted access

Abstract  

The psi function ψ(x) is defined by ψ(x) = Γ′(x)/Γ(x) and ψ (i)(x), for i ∈ ℕ, denote the polygamma functions, where Γ(x) is the gamma function. In this paper, we prove that the functions

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$[\psi '(x)]^2 + \psi ''(x) - \frac{{x^2 + 12}} {{12x^4 (x + 1)^2 }}$$ \end{document}
and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\frac{{x + 12}} {{12x^4 (x + 1)}} - \{ [\psi '(x)]^2 + \psi ''(x)\}$$ \end{document}
are completely monotonic on (0,∞).

Restricted access

Abstract  

We discuss and complement the knowledge about generalized Orlicz classes

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\tilde X_\Phi$$ \end{document}
and Orlicz spaces X Φ obtained by replacing the space L 1 in the classical construction by an arbitrary Banach function space X. Our main aim is to focus on the task to study inequalities in such spaces. We prove a number of new inequalities and also natural generalizations of some classical ones (e.g., Minkowski’s, H�lder’s and Young’s inequalities). Moreover, a number of other basic facts for further study of inequalities and function spaces are included.

Restricted access