Search Results

You are looking at 1 - 3 of 3 items for :

  • Refine by Access: All Content x
Clear All

Abstract

We prove three theorems on Wilson functions (these special functions were introduced by Groenevelt in 2003). These theorems were stated without proof and applied for the proof of a summation formula related to automorphic forms in our paper [2].

Restricted access

Abstract

We prove that a relatively general even function f(x) (satisfying a vanishing condition, and also some analyticity and growth conditions) on the real line can be expanded in terms of a certain function series closely related to the Wilson functions introduced by Groenevelt in 2003. The coefficients in the expansion of f will be inner products in a suitable Hilbert space of f and some polynomials closely related to Wilson polynomials (these are well-known hypergeometric orthogonal polynomials).

Restricted access

Abstract  

The paper is concerned with bounds for integrals of the type
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\int\limits_{U_k (x)} {\left| {p_n^{(\alpha , \beta )} (t)} \right|^p w^{(a, b)} } (t) dt, p \geqq 0$$ \end{document}
, involving Jacobi polynomials p n (α,β) and Jacobi weights w (a,b) depending on α,β, a, b > −1, where the subsets U k(x) ⊂ [−1, 1] located around x and are given by
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$U_k (x) = \left[ {x - \tfrac{{\phi _k (x)}} {k}, x + \tfrac{{\phi _k (x)}} {k}} \right] \cap [ - 1, 1]$$ \end{document}
with
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\phi _k (x) = \sqrt {1 - x^2 } + \tfrac{1} {k}$$ \end{document}
. The functions to be integrated will also be of the type
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\left| {\tfrac{{p_n^{(\alpha , \beta )} (t)}} {{x - t}}} \right|$$ \end{document}
on the domain [−1,1] t/ U k(x). This approach uses estimates of Jacobi polynomials modified Jacobi weights initiated by Totik and Lubinsky in [1]. Various bounds for integrals involving Jacobi weights will be derived. The results of the present paper form the basis of the proof of the uniform boundedness of (C, 1) means of Jacobi expansions in weighted sup norms in [3].
Restricted access