Search Results
Periodica Mathematica Hungarica
Author:
Tibor Krisztin
Abstract
In this survey paper the delay differential equation \documentclass{aastex}
\usepackage{amsbsy}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{mathrsfs}
\usepackage{pifont}
\usepackage{stmaryrd}
\usepackage{textcomp}
\usepackage{upgreek}
\usepackage{portland,xspace}
\usepackage{amsmath,amsxtra}
\pagestyle{empty}
\DeclareMathSizes{10}{9}{7}{6}
\begin{document}
$$\dot x(t) = - \mu x(t) + g(x(t - 1))$$
\end{document} (t) = −µx(t) + g(x(t − 1)) is considered with µ ≥ 0 and a smooth real function g satisfying g(0) = 0. It is shown that the dynamics generated by this simple-looking equation can be very rich. The dynamics is completely
understood only for a small class of nonlinearities. Open problems are formulated.