Search Results

You are looking at 1 - 2 of 2 items for :

Clear All

Let S be a set of n points distributed uniformly and independently in a convex, bounded set in the plane. A four-gon is called empty if it contains no points of S in its interior. We show that the expected number of empty non-convex four-gons with vertices from S is 12n 2logn + o(n 2logn) and the expected number of empty convex four-gons with vertices from S is Θ(n 2).

Open access

Abstract  

Let K be a convex body in ℝd, let j ∈ {1, …, d−1}, and let K(n) be the convex hull of n points chosen randomly, independently and uniformly from K. If ∂K is C + 2, then an asymptotic formula is known due to M. Reitzner (and due to I. Bárány if ∂K is C + 3) for the difference of the jth intrinsic volume of K and the expectation of the jth intrinsic volume of K(n). We extend this formula to the case when the only condition on K is that a ball rolls freely inside K.

Restricted access