Search Results

You are looking at 1 - 7 of 7 items for :

  • "Antoine equation" x
  • All content x
Clear All

Abstract  

The objective of this work was to develop and validate a fast and reproducible method which is able to determine the concentration of ketoconazole in raw materials and tablets. The samples were analyzed by dynamic thermogravimetry at heating rates of 10, 20, 40, 60 and 80°C min−1 in nitrogen and nitrogen-synthetic air mixture. The concentrations of ketoconazole in the raw material and in the tablets were obtained from the vapor pressure curves. The data showed that there is no significant difference between the vapor pressure profiles of ketoconazole itself and in its tablet in both studied environmental conditions confirming that the process is really vaporization. The concentration of ketoconazole was determined in the raw material and tablets of the drug.

Restricted access

Abstract  

The objective of this work was to develop and validate a fast and reproducible method to determine the concentration of metronidazole in drug substance and tablets. The samples were analyzed by dynamic thermogravimetry, using 10, 20, 40, 60 and 80C min–1 heating rates in nitrogen and in nitrogen with synthetic air. Obtained data were used in the Antoine and Langmuir equations in order to have the pressure curves. Vapor pressure curves of drug and tablet of metronidazole were evaluated using the mathematical indexes of difference factor, f 1, and similarity factor, f 2, to compare their profiles. The data showed that there is no significant difference between the vapor pressure profiles of drug and tablet of metronidazole in both environmental conditions, which confirms that the process is really vaporization. The concentration of metronidazole was determined in the raw material and tablets of the drug.

Restricted access

the Antoine equation stated below [ 17 ]. Non-isothermal thermogravimetric curves of warifteine and methylwarifteine were obtained using a Shimadzu TGA-50H thermobalance applying 10, 15, and 20 °C min −1 heating rates up to 900 °C in synthetic

Restricted access

Abstract  

Hydroxy benzoic acids were subjected to rising temperature thermogravimetric analysis. After optimizing the procedural variables, the kinetics of decomposition was determined and methyl paraben was taken as the calibration compound to characterize the evaporation patterns for the ortho and meta derivatives. The E act values for ortho, meta and para derivatives were 64.8, 78.2, and 119.1 kJ mol–1, respectively. The Antoine and Langmuir equations were utilized to determine the coefficient of evaporation k, which was 1245250.8, units being in the SI system. The vapor pressure plots were generated for the ortho and meta derivatives; ΔH vap for these two compounds were obtained as 66.7 and 80.4 kJ mol–1, respectively.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Xian'e Cia, Daichun Du, Youming Jin, and Yixiang Qian

Abstract  

N(C5F11)3 (Fluorint FC-70) has been chosen as the test material to compare the chemicophysical data obtained by static-sample and DSC methods. The normal boiling point, the molar enthalpy of vaporization, and the constants of the Antoine equation of fluorint FC-70 are reported. DSC can be developed into a simple and rapid routine instrument to determine the enthalpy of vaporization as well as the boiling point of liquid, particularly at relative high temperature.

Restricted access

Abstract  

Isopropylnitrate (IPN) is described as a detonable material used in propellants and explosives. While there is considerable information available on its sensitivity and compatibility with other materials, very little is known about its thermochemical properties. This paper will describe the results obtained from some DSC, heat flux calorimetry (HFC) and accelerating rate calorimetry (ARC) measurements. The ASTM DSC method using a hermetic aluminum pan having a lid with a laser-produced pin hole was used to determine the vapour pressure of IPN1. Results calculated from an Antoine equation are in substantial agreement with those determined from DSC measurements. From the latter measurements, the enthalpy of vaporization was determined to be 35.320.62 kJ mol−1. Attempts to determine vapour pressures above about 0.8 MPa resulted in significant decomposition of IPNg. The enthalpy change for decomposition in sealed glass systems was found to be -3.430.09 kJ g−1 and -3.850.03 kJ g−1, respectively from DSC and HFC measurements on IPN1 samples loaded in air. Slightly larger exotherms were observed for the HFC results in air than those in inert gas, suggesting some oxidation occurs. In contrast, no significant difference in the observed onset temperature of about 150C was observed for both the HFC and ARC results. From DSC measurements, an Arrhenius activation energy for decomposition of 1264 kJ mol−1 was found. These measurements were also conducted in sealed glass systems and decomposition appeared to proceed primarily from the liquid phase.

Restricted access

equilibrium system, y i and x i are the mole fractions of the component i in the vapor, respectively, liquid phase. The saturation vapor pressure of the pure component, P i s was obtained from Antoine equation. The second virial coefficients required

Restricted access