Search Results

You are looking at 1 - 6 of 6 items for :

  • "Bessel bridge" x
  • All content x
Clear All

PITMAN, J. and YOR, M., The law of a maximum of a Bessel bridge, Electronic J. Probability 4 (1999), Paper no. 15, 1-35. The law of a maximum of a Bessel bridge Electronic J. Probability

Restricted access

Abstract  

Firstly, we compute the distribution function for the hitting time of a linear time-dependent boundary ta + bt, a ≥ 0, b ∈ ℝ, by a reflecting Brownian motion. The main tool hereby is Doob’s formula which gives the probability that Brownian motion started inside a wedge does not hit this wedge. Other key ingredients are the time inversion property of Brownian motion and the time reversal property of diffusion bridges. Secondly, this methodology can also be applied for the three-dimensional Bessel process. Thirdly, we consider Bessel bridges from 0 to 0 with dimension parameter δ > 0 and show that the probability that such a Bessel bridge crosses an affine boundary is equal to the probability that this Bessel bridge stays below some fixed value.

Restricted access

with a unit root , Econometrica 55 ( 1987 ), 277 – 301 . MR 89c:62156 [14] P itman , J. and Y or , М. , A decomposition of Bessel bridges, Z

Restricted access

Donati-Martin, C. , Some remarks about the identity in law for the Bessel bridge \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage

Restricted access

PITMAN, J. and YOR, M., A decomposition of Bessel bridges, Z. Wahrsch. Verw. Gebiete , 59(4) (1982), 425-457. MR 84a: 60091 A decomposition of Bessel bridges Z. Wahrsch. Verw. Gebiete

Restricted access

Pitman, J. and Yor, M. , A decomposition of Bessel bridges, Z. Wahrsch. Verw. Gebiete 59(4) (1982), 425–457. MR 84a :60091 Yor M. A decomposition of Bessel bridges

Restricted access