Search Results

You are looking at 1 - 10 of 10 items for :

  • "Brownian bridge" x
Clear All

Summary Results of penalization of a one-dimensional Brownian motion \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $(X_t)$ \end{document}, by its one-sided maximum \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\big(S_t=\sup_{0 \leq u \leq t}X_u\big)$ \end{document}, which were recently obtained by the authors are improved  with the consideration - in the present paper - of the asymptotic behaviour of the likewise penalized Brownian bridges of length \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $t$ \end{document}, as \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $t\rightarrow \infty$ \end{document}, or penalizations by functions of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $(S_t,X_t)$ \end{document}, and also the study of the speed of convergence, as \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $t\rightarrow \infty$ \end{document}, of the penalized distributions at time \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $t$ \end{document}.

Restricted access

Summary Let \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\alpha_n$ \end{document} and \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\beta_n$ \end{document} be respectively the uniform empirical and quantile processes, and define \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $R_n = \alpha_n + \beta_n$ \end{document}, which usually is referred to as the Bahadur--Kiefer process. The well-known Bahadur-Kiefer theorem confirms the following remarkable equivalence: \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\|R_n\| /\sqrt{\| \alpha_n \|  }\, \sim \, n^{-1/4} (\log n)^{1/2}$ \end{document} almost surely, as \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $n$ \end{document} goes to infinity, where \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\| f\| =\sup_{0\le t\le 1} |f(t)|$ \end{document} is the \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $L^\infty$ \end{document}-norm. We prove that \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\|R_n\|_2 /\sqrt{\| \alpha_n \|_1}\, \sim \, n^{-1/4}$ \end{document} almost surely, where \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\| \, \cdot \, \|_p$ \end{document} is the \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $L^p$ \end{document}-norm. It is interesting to note that there is no longer any logarithmic term in the normalizing function. More generally, we show that \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $n^{1/4} \|R_n\|_p /\sqrt{\| \alpha_n \|_{(p/2)}}$ \end{document} converges almost surely to a finite positive constant whose value is explicitly known.

Restricted access

Abstract  

Consider the set Θn of all a n-sized increment processes of the uniform empirical process α n on [0, 1]. We assume that a n ↓ 0, na n ↑ ∞, d n = na n(log n)−1 → ∞ and na n(log n)−7/3 = O(1). In Berthet (1996, 2005) the fourth assumption was shown to be critical with respect to the pointwise rates of convergence in the functional law of Deheuvels and Mason (1992) for Θn because strong approximation methods become ineffective at such a small scale a n. We are now able to study directly these small empirical increments and compute the exact rate of clustering of Θn to any Strassen function having Lebesgue derivative of bounded variation by making use of a sharp small deviation estimate for a Poisson process of high intensity due to Shmileva (2003a). It turns out that the best rates are of order d n 1/4(log n)−1 and are faster than in the Brownian case whereas the slowest rates are of order d n −1/2 and correspond to the apparently crude ones obtained in Berthet (2005) by means of Gaussian small ball probabilities. These different sharp properties of the empirical and Brownian paths imply an almost sure lower bound in the strong invariance principle and provide a new insight into the famous KMT approximation of α n.

Restricted access

Abstract  

Firstly, we compute the distribution function for the hitting time of a linear time-dependent boundary ta + bt, a ≥ 0, b ∈ ℝ, by a reflecting Brownian motion. The main tool hereby is Doob’s formula which gives the probability that Brownian motion started inside a wedge does not hit this wedge. Other key ingredients are the time inversion property of Brownian motion and the time reversal property of diffusion bridges. Secondly, this methodology can also be applied for the three-dimensional Bessel process. Thirdly, we consider Bessel bridges from 0 to 0 with dimension parameter δ > 0 and show that the probability that such a Bessel bridge crosses an affine boundary is equal to the probability that this Bessel bridge stays below some fixed value.

Restricted access

Abstract  

We consider an empirical process based upon ratios of selected pairs of spacings, generated by independent samples of arbitrary sizes. As a main result, we show that when both samples are uniformly distributed on (possibly shifted) intervals of equal lengths, this empirical process converges to a mean-centered Brownian bridge of the form B C(u) = B(u)−6Cu(1−u) Σ0 1 B(s)ds, where B(·) denotes a Brownian bridge, and C, a constant. The investigation of the class of Gaussian processes {B C(·): C ∈ ℝ} leads to some unexpected distributional identities such as B 2(·)

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\underline{\underline d}$$ \end{document}
B(·). We discuss this and similar results in an extended framework.

Restricted access

Pitman, J. and Yor, M. , On the distribution of ranked heights of excursions of a Brownian bridge, Ann. Probab. , 29 (1) (2001), 361–384. MR 2002b :60139 Yor M. On

Restricted access

. Wahrscheinlichkeitstheorie verw . Gebiete 59 ( 1982 ), 425 – 457 . MR 84a:60091 [15] T olmatz , L. , On the distribution of the square integral of the Brownian bridge , Ann

Restricted access

Roynette, B., Vallois, P. , and Yor, M. , Limiting laws for long Brownian bridges perturbed by their one-sided maximum, III, Period. Math. Hungar. , 50(1–2) (2005), 247–280. MR 2006m :60119 Yor M

Restricted access

. , Limiting laws for long Brownian bridges perturbed by their one-sided maximum, III, Periodica Mathematica Hungarica , 50(1–2) (2005), 247–280. MR 2006m :60119 Yor M

Restricted access