Search Results

You are looking at 1 - 10 of 67 items for :

  • "Brownian motion" x
Clear All

Bojdecki T., Gorostiza, L. G. and Talarczyk, A. , Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particle systems, Electron. Comm. Probab. , 12 (2007), 161–172. MR 2008b :60072

Restricted access

. Math. 12 ( 1974 ), 239252 . MR 52#9311 [3] E l-Nouty , C. , On the lower classes of fractional Brownian motion , Studia Sci. Math. Hunyar. 37 ( 2001 ). MR

Restricted access

Bojdecki, T., Gorostiza, L. G. and Talarczyk, A. , Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particle systems, Electron. Comm. Probab. , 12 (2007), 161–172. MR 2008b :60072

Restricted access

Brownian motion and sub-fractional Brownian motion related to particle systems, Electron. Comm. Probab. , 12 (2007), 161–172. MR 2008b :60072 Talarczyk A. Some extensions

Restricted access

Abstract  

Small ball probability is estimated for a Brownian motion in l p. As an application we establish the modulus of non-differentiability of a Brownian motion in l p.

Restricted access

Summary This note is about an occupation time identity derived in [14] for reflecting Brownian motion with drift \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $-\mu<0,$ \end{document} RBM(\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $-\mu$ \end{document}), for short. The identity says that for RBM(\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $-\mu$ \end{document}) in stationary state

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$(I^{+}_t, I^{-}_t) \overset{(d)}{=} (t-G_t,D_t-t),\qquad t\in \mathbb{R},$$ \end{document}
where \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $G_t$ \end{document} and \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $D_t$ \end{document} denote the starting time  and the ending time, respectively, of an excursion from 0 to 0 (straddling \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $t$ \end{document}) and \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $I^{+}_t$ \end{document} and \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $I^{-}_t$ \end{document} are the occupation times above and below, respectively, of the observed level at time \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $t$ \end{document} during the excursion. Due to stationarity, the common distribution does not depend on \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $t.$ \end{document}  In fact, it is proved in [9] that the identity is true, under some assumptions, for all recurrent diffusions and stationary processes. In the null recurrent diffusion case the common distribution is not, of course, a probability distribution. The aim of this note is to increase understanding of the identity by studying the  RBM(\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $-\mu$ \end{document}) case via Ray--Knight theorems.

Restricted access

Abstract  

Large deviation results for Gaussian processes are presented. As an application, we obtain a functional limit result for small increments of a fractional Brownian motion. Lvy's modulus of continuity for a fractional Brownian motion is obtained as a special case.

Restricted access

Abstract  

Firstly, we compute the distribution function for the hitting time of a linear time-dependent boundary ta + bt, a ≥ 0, b ∈ ℝ, by a reflecting Brownian motion. The main tool hereby is Doob’s formula which gives the probability that Brownian motion started inside a wedge does not hit this wedge. Other key ingredients are the time inversion property of Brownian motion and the time reversal property of diffusion bridges. Secondly, this methodology can also be applied for the three-dimensional Bessel process. Thirdly, we consider Bessel bridges from 0 to 0 with dimension parameter δ > 0 and show that the probability that such a Bessel bridge crosses an affine boundary is equal to the probability that this Bessel bridge stays below some fixed value.

Restricted access

466 BORODIN, A. N. and SALMINEN, P., Handbook of Brownian motion-facts and formulae , Probability and its Applications. Birkhäuser Verlag, Basel, second edition, 2002. MR 2003g: 60001

Restricted access