Search Results

You are looking at 1 - 1 of 1 items for :

  • "Characterization of convergence in the mean" x
Clear All

Let ν be a positive Borel measure on ℝ̄+:= [0;∞) and let p: ℝ̄+ → ℝ̄+ be a weight function which is locally integrable with respect to ν. We assume that \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $P(t): = \int\limits_0^t {p(u)d\nu (u) \to \infty } andP(t - 0)/P(t) \to 1ast \to \infty .$ \end{document} Let f: ℝ̄+ → ℂ be a locally integrable function with respect to p dν, and define its weighted averages by \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\sigma _t (f;pd\nu ): = \frac{1}{{P(t)}}\int\limits_0^t {f(u)p(u)d\nu (u)} $ \end{document} for large enough t, where P(t) > 0. We prove necessary and sufficient conditions under which the finite limit \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\sigma _t (f;pd\nu ) \to Last \to \infty $ \end{document} exists. This characterization is a unified extension of the results in [5], and it may find application in Probability Theory and Stochastic Processes.

Restricted access