Search Results

You are looking at 1 - 2 of 2 items for :

  • "Composite molecular sieve" x
  • All content x
Clear All

Abstract  

β-MCM41 composite molecular sieves were hydrothermally synthesized using NaOH treated β zeolite as precursors, and Pt/β-MCM41 bifunctional catalysts were prepared by impregnation. Hβ, desilicated Hβ by NaOH treatment (Dβ), and the physical mixture of Hβ and MCM41 (β+MCM41) were also used as control supports for bifunctional catalysts. All the catalysts were characterized by ICP, XRD, BET, nitrogen adsorption–desorption isotherm and NH3-TPD, and evaluated in the hydroisomerization of n-heptane using an atmospheric fixed bed flow reactor. Dβ, β+MCM41, or β-MCM41 supported Pt catalysts showed higher selectivity to isoheptanes than the counterpart Pt/Hβ did due to the presence of mesopores in addition to the zeolite micropores. Moreover, Pt/β-MCM41 was demonstrated to be a much more selective catalyst among them because the connection between mesopores and micropores accelerated the diffusion of larger molecules of isoheptanes. Under optimal conditions, Pt/β-MCM41 provided a very high selectivity to isomerization of 96.5%, coupled with a considerable high conversion of n-heptane of 56.0%.

Restricted access

bifunctional Pt catalyst with the composite molecular sieve β-MCM-41 as support, which largely improved the selectivity to isomerization together with quite a high conversion [ 25 ]. Very recently, we hydrothermally synthesized a novel β zeolite

Restricted access