Search Results

You are looking at 1 - 10 of 114 items for :

  • "Dicarbollylcobaltate" x
  • Refine by Access: All Content x
Clear All

Abstract  

Extraction of microamounts of cesium by a nitrobenzene solution of hydrogen dicarbollylcobaltate (H+B) in the presence of polypropylene glycol PPG 425 (L) has been investigated. The equilibrium data have been explained assuming that the complex species HL+ and CsL+ (L = PPG 425) are extracted into the organic phase. The values of extraction and stability constants of the cationic complex species in nitrobenzene saturated with water have been determined.

Restricted access

Abstract  

Extraction of microamounts of cesium by a phenyltrifluoromethyl sulfone (FS 13) solution of hydrogen dicarbollylcobaltate (H+B) in the presence of polyethylene glycol PEG 400 (L) has been investigated. The equilibrium data have been explained assuming that the species HL+ and CsL+ (L = PEG 400) are extracted into the organic phase. The values of extraction and stability constants of the cationic complex species in FS 13 saturated with water have been determined.

Restricted access

Abstract  

Extraction of microamounts of cesium by nitrobenzene solutions of sodium dicarbollylcobaltate (Na+B), potassium dicarbollylcobaltate (K+B) and rubidium dicarbollylcobaltate (Rb+B) in the presence of polypropylene glycol PPG 425 (L) has been investigated. The equilibrium data have been explained assuming that the complex species ML+ (M+ = Na+, K+, Rb+, Cs+; L = PPG 425) are present in the organic phase. The stability constants of the cationic complex species ML+ (M+ = Na+, K+, Rb+) in nitrobenzene saturated with water have been determined; they were found to increase in the series of Rb+ < K+ < Na+.

Restricted access

Abstract  

Extraction of microamounts of calcium and strontium by a nitrobenzene solution of hydrogen dicarbollylcobaltate (H+B) in the presence of polypropylene glycol PPG 425 (L) has been investigated. The equilibrium data have been explained assuming that the species HL+, CaL2+ and SrL2+ (L = PPG 425) are extracted into the organic phase. The values of extraction and stability constants of the cationic complex species in nitrobenzene saturated with water have been determined. It was found that in water-saturated nitrobenzene, the stability constant of the complex SrL2+, where L is PPG 425, is somewhat higher than that of the species CaL2+ with the same ligand L.

Restricted access

Abstract  

Solvent extraction of microamounts of europium and cerium by a nitrobenzene solution of hydrogen dicarbollylcobaltate (H+B) in the presence of polyethylene glycol PEG 600 (L) has been investigated. The equilibrium data have been explained assuming that the complexes HL+, H2L2+ and ML3+ (M3+ = Eu3+, Ce3+; L = PEG 600) are extracted into the organic phase. The values of extraction and stability constants of the species in nitrobenzene saturated with water have been determined. It was found that the stability constants of the EuL3+ and CeL3+ cationic complex species (L = PEG 600) in water-saturated nitrobenzene are the same.

Restricted access

Abstract  

Extraction of microamounts of calcium and strontium by a phenyltrifluoromethyl sulfone (FS 13) solution of hydrogen dicarbollylcobaltate (H+B) in the presence of polyethylene glycol PEG 400 (L) has been investigated. The equilibrium data have been explained assuming that the species HL+, CaL2+ and SrL2+ (L = PEG 400) are extracted into the organic phase. The values of extraction and stability constants of the cationic complex species in FS 13 saturated with water have been determined. It was found that in water-saturated FS 13, the stability constant of the complex SrL2+, where L is PEG 400, is somewhat higher than that of the species CaL2+ with the same ligand L.

Restricted access

Abstract  

Extraction of microamounts of calcium and strontium by a nitrobenzene solution of hydrogen dicarbollylcobaltate (H+B) in the presence of 1,2-(diphenylphosphino)ethylene dioxide (DPPEDO, L) has been investigated. The equilibrium data have been explained assuming that the species HL+, HL2 +, CaL2 2+, CaL3 2+, CaL4 2+, SrL2 2+ and SrL3 2+ are extracted into the organic phase. The values of extraction and stability constants of the cationic complexes in nitrobenzene saturated with water have been determined. In the considered nitrobenzene medium, it was found that the stability constants of the CaLn 2+ complexes, where n = 2, 3 and L is DPPEDO, are somewhat higher than those of the corresponding complex species SrLn 2+.

Restricted access

Abstract  

Extraction of microamounts of europium and americium by a phenyltrifluoromethyl sulfone (FS 13) solution of hydrogen dicarbollylcobaltate (H+B) in the presence of octyl-phenyl-N,N-diisobutylcarbamoylmethyl phosphine oxide (“classical” CMPO, L) has been investigated. The equilibrium data have been explained assuming that the complexes
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $${\text{HL}}_{{}}^{ + }$$ \end{document}
,
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $${\text{HL}}_{2}^{ + }$$ \end{document}
,
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $${\text{ML}}_{ 2}^{3 + }$$ \end{document}
,
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $${\text{ML}}_{ 3}^{3 + }$$ \end{document}
and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $${\text{ML}}_{ 4}^{3 + }$$ \end{document}
(M3+ = Eu3+, Am3+) are extracted into the organic phase. The values of extraction and stability constants of the cationic complex species in FS 13 saturated with water have been determined. It was found that the stability constants of the corresponding complexes
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $${\text{EuL}}_{n}^{3 + }$$ \end{document}
and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $${\text{AmL}}_{n}^{3 + }$$ \end{document}
, where n = 2, 3, 4 and L is “classical” CMPO, in water-saturated FS 13 are comparable.
Restricted access

Abstract  

Extraction of microamounts of calcium and strontium by a nitrobenzene solution of hydrogen dicarbollylcobaltate (H+B) in the presence of 2,3-naphtho-15-crown-5 (N15C5, L) has been investigated. The equilibrium data have been explained assuming that the complexes HL+, HL2 +, CaL2+, CaL2 2+ and SrL2 2+ are extracted into the organic phase. The values of extraction and stability constants of the species in nitrobenzene saturated with water have been determined. It has been found that in water saturated nitrobenzene the stability constant of the SrL2 2+ cationic complex species is substantially higher than that of the complex CaL2 2+.

Restricted access

Abstract  

Extraction of microamounts of cesium by a nitrobenzene solution of ammonium dicarbollylcobaltate
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$( {{\text{NH}}_{ 4}^{ + } {\text{B}}^{ - } })$$ \end{document}
and thallium dicarbollylcobaltate
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$( {{\text{Tl}}^{ + } {\text{B}}^{ - } })$$ \end{document}
in the presence of 2,3-naphtho-15-crown-5 (N15C5, L) has been investigated. The equilibrium data have been explained assuming that the complexes
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $${\text{ML}}^{ + }$$ \end{document}
and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $${\text{ML}}_{ 2}^{ + }$$ \end{document}
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$( {{\text{M}}^{ + } = {\text{NH}}_{4}^{ + } ,{\text{Tl}}^{ + } ,{\text{Cs}}^{ + } } )$$ \end{document}
are present in the organic phase. The stability constants of the
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $${\text{ML}}^{ + }$$ \end{document}
and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $${\text{ML}}_{2}^{ + }$$ \end{document}
species
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$( {{\text{M}}^{ + } = {\text{NH}}_{4}^{ + } ,{\text{Tl}}^{ + } })$$ \end{document}
in nitrobenzene saturated with water have been determined. It was found that the stability of the complex cations
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $${\text{ML}}^{ + }$$ \end{document}
and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $${\text{ML}}_{2}^{ + }$$ \end{document}
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$({{\text{M}}^{ + } = {\text{NH}}_{4}^{ + } ,{\text{Tl}}^{ + } ,{\text{Cs}}^{ + } ;\;{\text{L}} = {\text{N}}15{\text{C}}5})$$ \end{document}
in the mentioned medium increases in the
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $${\text{Cs}}^{ + }\,<\, {\text{NH}}_{4}^{ + }\,<\,{\text{Tl}}^{ + }$$ \end{document}
order.
Restricted access