Search Results

You are looking at 1 - 10 of 13 items for :

  • "Differential thermogravimetric analysis" x
  • Refine by Access: All Content x
Clear All

total mass loss for dehydroxylation is 3.27%. Fig. 2 Thermogravimetric and differential thermogravimetric analysis of ( a ) sodium montmorillonites and ( b ) calcium montmorillonite

Restricted access

Abstract  

Thermal analysis and differential thermal analysis offers a novel means of studying the desorption of acids such as stearic acid from clay surfaces. Both adsorption and chemisorption can be distinguished through the differences in the temperature of mass losses. Increased adsorption is achievable by adsorbing onto a surfactant adsorbed montmorillonite. Stearic acid sublimes at 179 °C but when adsorbed upon montmorillonite sublimes at 207 and 248 °C. These mass loss steps are ascribed to the desorption of the stearic acid on the external surfaces of the organoclays and from the de-chemisorption from the surfactant held in the interlayer of the montmorillonite.

Restricted access

Abstract  

This paper presents the reactions of synthesis between the ligand sodium diphenylamine-4-sulfonate and the lanthanum(III) chloride hydrated. The compounds (LaCl3)2(C12H10NSO3Na)32(CH3CH2OH) (A) and (LaCl3)(C12H10NSO3Na)(CH3CH2OH)12H2O (B) were obtained using the solvents ethanol and methanol (synthesis A) and ethanol and water (synthesis B). The produced compounds and the ligand were characterized by thermogravimetric and differential thermogravimetric analysis, IR spectroscopy and elemental analysis of sodium, carbon, hydrogen, nitrogen, sulfur, chlorine and lanthanum, whereas the residues from thermal decomposition were investigated by X-ray diffractometry.

Restricted access

Abstract  

Thermogravimetric and differential thermogravimetric analysis has been used to characterize alunite of formula [K2(Al3+)6(SO4)4(OH)12]. Thermal decomposition occurs in a series of steps (a) dehydration up to 225°C, (b) well defined dehydroxylation at 520°C and desulphation which takes place as a series of steps at 649, 685 and 744°C. The alunite minerals were further characterized by infrared emission spectroscopy (IES). Well defined hydroxyl stretching bands at around 3463 and 3449 cm−1 are observed. At 550°C all intensity in these bands is lost in harmony with the thermal analysis results. OH stretching bands give calculated hydrogen bond distances of 2.90 and 2.84–7 Å. These hydrogen bond distances increase with increasing temperature. Characteristic (SO4)2− stretching modes are observed at 1029.5, 1086 and 1170 cm−1. These bands shift to lower wavenumbers on thermal treatment. The intensity in these bands is lost by 550°C.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Saheli Ganguly, Kausik Dana, Tapas Kumar Mukhopadhyay, and Sankar Ghatak

Abstract

The decomposition mechanism of intercalated montmorillonites at a particular temperature region and the activation energy involved in it are the two important aspects which determines the thermal stability of intercalated montmorillonites. In this study, montmorillonite was intercalated with alkyl (methyl, ethyl, propyl, and dodecyl) triphenyl phosphonium intercalates. Differential thermogravimetric analysis of each intercalated montmorillonites showed different peaks with associated organic loss at different temperature zone. Intercalated montmorillonites were subjected to isothermal kinetic analysis corresponding to selected temperature zone obtained from DTG peaks. Activation energies of organic decomposition process at selected temperature zones were determined. Mass spectral analysis and FTIR were done to understand the decomposition mechanisms and to relate them with the estimated activation energies.

Restricted access

Thermal decomposition of hydromagnesite

Effect of morphology on the kinetic parameters

Journal of Thermal Analysis and Calorimetry
Authors: D. Bhattacharjya, T. Selvamani, and Indrajit Mukhopadhyay

Abstract

Non isothermal decomposition of synthetically prepared hydromagnesite phase with two different morphologies (2-D micro sheets and nests) was studied in dynamic nitrogen atmosphere by thermogravimetric analysis, differential thermogravimetric analysis, and differential scanning calorimetric techniques. Two different kinetic models, i.e. the Friedman isoconversion and the Flynn–Wall methods were employed for the analysis of thermal decomposition. The apparent activation energy (E a) of the hydromagnesite phases having 2-D micro sheet and nest morphology were calculated and compared. The activation energy of nest morphology was found to be relatively higher than 2-D micro sheets. The higher activation energy for the relatively close packed ‘nest’ morphology is attributed to the difficulty of thermal transport in the core.

Restricted access

Abstract  

A new complex, diaquadi(1,2,4-triazol-5-one)zinc(II) ion nitrate formulated as {[Zn(TO)2(H2O)2](NO3)2}n (1) (1,2,4-triazole-5-one, abbreviated as: TO) was synthesized and characterized by elemental analysis, X-ray single crystal diffraction, infrared spectrum (IR), differential scanning calorimetry (DSC), thermogravimetric analysis and differential thermogravimetric analysis (TG-DTG). The X-ray structure analysis reveals that the complex is orthorhombic with space group Pbca and unit-cell parameters a=6.9504(2) �; b=10.6473(3) �; c=17.8555(5) �. Based on the result of thermal analysis, the thermal decomposition process of the compound was derived. From measurement of the enthalpy of solution in water in 298.15 K, the standard molar enthalpy of solution of lignand TO and the complex were determined as 15.43�0.18 and 52.64�0.42 kJ mol−1, respectively. In addition, the standard molar enthalpy of formation of TO(aq) was calculated as −126.97�0.72 kJ mol−1.

Restricted access

Abstract

Three halotrichites namely halotrichite Fe2&SO4·Al2(SO4)3·22H2O, apjohnite Mn2&SO4·Al2(SO4)3·22H2O and dietrichite ZnSO4·Al2(SO4)3·22H2O, were analysed by both dynamic, controlled rate thermogravimetric and differential thermogravimetric analysis. Because of the time limitation in the controlled rate experiment of 900 min, two experiments were undertaken (a) from ambient to 430 °C and (b) from 430 to 980 °C. For halotrichite in the dynamic experiment mass losses due to dehydration were observed at 80, 102, 319 and 343 °C. Three higher temperature mass losses occurred at 621, 750 and 805 °C. In the controlled rate thermal analysis experiment two isothermal dehydration steps are observed at 82 and 97 °C followed by a non-isothermal dehydration step at 328 °C. For apjohnite in the dynamic experiment mass losses due to dehydration were observed at 99, 116, 256, 271 and 304 °C. Two higher temperature mass losses occurred at 781 and 922 °C. In the controlled rate thermal analysis experiment three isothermal dehydration steps are observed at 57, 77 and 183 °C followed by a non-isothermal dehydration step at 294 °C. For dietrichite in the dynamic experiment mass losses due to dehydration were observed at 115, 173, 251, 276 and 342 °C. One higher temperature mass loss occurred at 746 °C. In the controlled rate thermal analysis experiment two isothermal dehydration steps are observed at 78 and 102 °C followed by three non-isothermal dehydration steps at 228, 243 and 323 °C. In the CRTA experiment a long isothermal step at 636 °C attributed to de-sulphation is observed.

Restricted access

Thermal stability of stercorite H(NH4)Na(PO4)·4H2O

A cave mineral from Petrogale Cave, Madura, Eucla, Western Australia

Journal of Thermal Analysis and Calorimetry
Authors: Ray L. Frost and Sara J. Palmer

higher temperature mass losses as is indicated by the ion current curves appear to be due to the decomposition of calcite. Fig. 1 Thermogravimetric and differential thermogravimetric analysis of stercorite

Restricted access

Thermal stability of crandallite CaAl3(PO4)2(OH)5·(H2O)

A ‘Cave’ mineral from the Jenolan Caves

Journal of Thermal Analysis and Calorimetry
Authors: Ray L. Frost, Sara J. Palmer, and Ross E. Pogson

Thermogravimetric and differential thermogravimetric analysis of crandallite Fig. 3 Selected ion current curves of the evolved gases resulting from the thermal decomposition of

Restricted access