Search Results

You are looking at 1 - 8 of 8 items for :

  • "Gröbner bases" x
Clear All

Adams, W. W and Loustaunau, P. , An Introduction to Gröbner Bases , American Mathematical Society, 1994. MR 95g :13025 Anstee, R. P., Rónyai, L and Sali, A. , Shattering news

Restricted access

Adams, W. W. and Loustaunau, P. , An Introduction to Gröbner bases , Graduate studies in mathematics, vol. 3, American Mathematical Scociety, 2003

Open access

Curves , 23№ Colóquio Brasileiro de Mathemática. IMPA, Rio de Janerio (2001). Lazard, D. , Gröbner Bases, Gausian Elimination and Resolution of systems of Algebraic Equations, Proceedings of Eurocal 83

Restricted access

2003 128 395 401 Becker T, Weispfenning V L 1998: Gröbner-bases. Graduate Texts in Mathematics 141, Springer

Restricted access

. , Gröbner bases and primary decomposition of polynomial ideals, J. Symbolic Computations , 16 (1988), 149–167. MR 0988410 90f :68091 Zacharias G. Gröbner bases and primary

Restricted access
Studia Scientiarum Mathematicarum Hungarica
Authors: Hiram López, Eliseo Sarmiento, Maria Pinto and Rafael Villarreal

Let K be a finite field and let X* be an affine algebraic toric set parameterized by monomials. We give an algebraic method, using Gröbner bases, to compute the length and the dimension of C X* (d), the parameterized affine code of degree d on the set X*. If Y is the projective closure of X*, it is shown that C X* (d) has the same basic parameters that C Y (d), the parameterized projective code on the set Y. If X* is an affine torus, we compute the basic parameters of C X* (d). We show how to compute the vanishing ideals of X* and Y.

Restricted access

. Photogrammetric Guide 1975 Awange J L 2002: Gröbner Bases, Multipolynomial Resultants and the Gauss-Jacobbi Combinatorical Algorithms

Restricted access

( 1986 ), no. 1 , 9 – 23 . [28] Sturmfels , B. , Gröbner Bases and Convex Polytopes , American Mathematical Society, University

Restricted access