Search Results

You are looking at 1 - 10 of 50 items for :

  • "Hardy space" x
  • Refine by Access: All Content x
Clear All

Abstract  

Several interpolation theorems on martingale Hardy spaces over weighted measure spaces are given. Our proofs are based on the atomic decomposition of martingale Hardy spaces over weighted measure spaces. As applications of interpolation theorems, some inequalities of martingale transform operator are obtained.

Restricted access

Abstract  

Some atomic decomposition theorems are proved in vector-valued weak martingale Hardy spaces w p Σα(X), w p Q α(X) and wD α(X). As applications of atomic decompositions, a sufficient condition for sublinear operators defined on some vector-valued weak martingale Hardy spaces to be bounded is given. In particular, some weak versions of martingale inequalities for the operators f*, S (p)(f) and σ(p)(f) are obtained.

Restricted access

We prove that the maximal conjugate and Hilbert operators are not bounded from the real Hardy space H 1 to L 1, where the underlying spaces may be over T or R. We also draw corollaries for the corresponding spaces over T 2 and R 2.

Restricted access

Abstract  

We prove that the maximal Fej'er operator is not bounded on the real Hardy spaces H 1, which may be considered over
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{T}$$ \end{document}
and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{R}$$ \end{document}
. We also draw corollaries for the corresponding Hardy spaces over
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{T}$$ \end{document}
2 and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{R}$$ \end{document}
2.
Restricted access

Abstract  

We consider Hausdorff operators generated by a function ϕ integrable in Lebesgue"s sense on either R or R 2, and acting on the real Hardy space H 1(R), or the product Hardy space H 11(R R), or one of the hybrid Hardy spaces H 10(R 2) and H 01(R 2), respectively. We give a necessary and sufficient condition in terms of ϕ that the Hausdorff operator generated by it commutes with the corresponding Hilbert transform.

Restricted access

In this paper the endpoint estimates for some multilinear operators related to certain sublinear integral operators on Herz and Herz type Hardy spaces are obtained. The operators include Littlewood-Paley operator and Marcinkiewicz operator.

Restricted access

Abstract  

We develop a Wold decomposition for the shift semigroup on the Hardy space
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{H}^2$$ \end{document}
of square summable Dirichlet series convergent in the half-plane
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Re (s) > 1/2$$ \end{document}
. As an application we have that a shift invariant subspace of
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{H}^2$$ \end{document}
is unitarily equivalent to
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{H}^2$$ \end{document}
if and only if it has the form
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\phi \mathcal{H}^2$$ \end{document}
for some
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{H}^2$$ \end{document}
-inner function φ.
Restricted access

Обобщаются некоторы е дуальные результат ы теории мартингалов. Доказан ы теоремы дуальности а томических простран ств Харди, пространствBMO иVMO.

Restricted access

154 – 164 10.1016/j.jat.2008.11.014 . [11] Weisz , F. 2002 Summability of Multi-dimensional Fourier Series and Hardy Spaces Mathematics

Restricted access