# Search Results

## You are looking at 1 - 1 of 1 items for :

• "Helly-type theorems"
• All content
Clear All

# Analogues of Horn’s theorem for finite unions of starshaped sets in ℝ d

Periodica Mathematica Hungarica
Author: Marilyn Breen

## Abstract

Fix k, d, 1 ≤ kd + 1. Let

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{F}$$ \end{document}
be a nonempty, finite family of closed sets in ℝd, and let L be a (dk + 1)-dimensional flat in ℝd. The following results hold for the set T ≡ ∪{F: F in
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{F}$$ \end{document}
}. Assume that, for every k (not necessarily distinct) members F 1, …, F k of
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{F}$$ \end{document}
,∪{F i: 1 ≤ ik} is starshaped and the corresponding kernel contains a translate of L. Then T is starshaped, and its kernel also contains a translate of L. Assume that, for every k (not necessarily distinct) members F 1, …, F k of
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{F}$$ \end{document}
,∪{F i: 1 ≤ ik} is starshaped and there is a translate of L meeting each set ker F i, 1 ≤ ik − 1. Then there is a translate L 0 of L such that every point of T sees via T some point of L 0. If k = 2 or d = 2, improved results hold.

Restricted access