Search Results

You are looking at 1 - 3 of 3 items for :

  • "Invasive impact" x
  • Refine by Access: All Content x
Clear All

Abstract

Biological invasion is a crucial problem in the world because of its negative consequences for protected areas. The degradation stage of vegetation might affect the success of invasion. One of the most abundant and threatening invasive species is the common milkweed (Asclepias syriaca L.) which has invaded already 23 countries of Europe and in several habitat types its further spreading is promoted by climate change. Pannonian sand grassland is one of the most threatened habitat by common milkweed invasion. Therefore, invasion in sand grassland vegetation is an important issue. However, the effects of the invasive plant in the open sand grassland are rather controversial. In order to clarify the existing contradictory results, the study was carried out in a strictly protected area, near Fülöpháza (Hungary) in a reserve core area in a UNESCO biosphere reserve. Microcoenological study was applied to determinate the fine-scale community characteristics of non-invaded and invaded stands in natural and seminatural vegetation and data were processed by Juhász-Nagy's information theory models. Shannon diversity of species combinations (compositional diversity) which describes the ways of the coexistence of species, and the number of realized species combinations were used for measuring beta diversity. Differences between stands were analyzed by two-way ANOVA. The maximum compositional diversity of species and main life-forms (annuals, perennials and cryptogams) did not differ significantly between the non-invaded and invaded stands. In contrast, significantly larger characteristic areas of compositional diversity were detected in the invaded stands. Based on these results, it could be concluded that diversity of species combinations did not change but those values have shifted to coarser scales in case of invaded stands. The direction of this change suggests a kind of impoverishment in the presence of Asclepias. Thus, it is worth mentioning from the invasion management point of view that protection of the habitats against disturbance is a more cost-effective and successful way than protection against the establishment or extirpation of invasive species, since disturbance facilitates the invasions throughout the impoverishment of the community.

Open access

Species richness, resource availability, and disturbance are the primary factors considered in assessing the invasibility of plant communities. Nonetheless, the density of individuals in a community is a common and easy trait to measure. The ecological significance of the density of both native and invasive tree species was assessed using a systematic review and formal meta-analysis. The densities of recipient communities and invasive exotic tree species in novel ranges were identified in the published literature. In addition, we compared by means of a meta-analysis: (i) densities of invasive versus native species in invaded communities; (ii) densities of native species in invaded versus uninvaded communities; and (iii) densities of invasive species along distance gradients from initial locus of invasion. Invasive trees were found at higher densities than native species in recipient communities. Invasions by woody species were also recorded in communities with relatively low densities of natives suggesting that (i) low density forests may be more susceptible to invasion and/or (ii) density of the recipient community may be reduced during the invasion process. In addition, comparison of native species densities between invaded and uninvaded stands from the same community suggests that invasive trees negatively affect density of native trees once established. Therefore, the widely reported low density and often richness of native plants in invaded communities cannot be directly linked to ecosystem susceptibility to invasion without considering concomitant impacts. These findings suggest that density is a key preliminary determinant or factor which should be considered when assessing tree invasion dynamics.

Restricted access

Trends Ecol. Evol. 2003 18 119 125 Carlton, J.T. 2002. Bioinvasion ecology: assessing invasion

Restricted access