Search Results

You are looking at 1 - 10 of 338 items for :

  • "Ionic strength" x
  • All content x
Clear All

Abstract  

Multiwalled carbon nanotubes (MWCNTs) have attracted multidisciplinary study because of their unique physicochemical properties. Herein, the sorption of U(VI) from aqueous solution to oxidized MWCNTs was investigated as a function of contact time, pH and ionic strength. The results indicate that U(VI) sorption on oxidized MWCNTs is strongly dependent on pH and ionic strength. The sorption of U(VI) is mainly dominated by surface complexation and cation exchange. The sorption of U(VI) on oxidized MWCNTs is quickly to achieve the sorption equilibrium. The sorption capacity calculated from sorption isotherms suggests that oxidized MWCNTs are suitable material in the preconcentration and solidification of U(VI) from large volumes of aqueous solutions.

Restricted access

Abstract  

In terms of pre-safety assessment of a potential site for high-level radioactive wastes disposal in China, the geochemical behavior of key radionuclides which tend to be released from the repository must be thoroughly investigated. 99Tc is a long-lived fission product with appreciable productivity in nuclear fuel, and Tc (+7) has unlimited solubility in near-field geochemical environments. In this study, the effects of ionic strength and humic acid on 99TcO4 sorption and diffusion in Beishan granite were investigated with through-diffusion and batch sorption experiments. Results indicated that the effective diffusion coefficients (D e) of 99TcO4 in Beishan granite varied from 1.07 × 10−12 to 1.28 × 10−12 m2/s without change with ionic strength, while the distribution coefficients (K d) negatively correlated with ionic strength of the rock/water system. This study also indicates that there is no evident influence of humic acid concentration on the diffusion behavior of 99TcO4 in Beishan granite, due to the limited interaction between humic acid and 99TcO4 .

Restricted access

Abstract  

The bentonite from Gaomiaozi county (Inner Mongolia, China) (denoted as GMZ bentonite) was characterized by X-ray powder diffraction and Fourier transform infrared spectroscopy. The effect of pH, contact time, ionic strength, humic acid (HA) and Eu(III) concentrations on Eu(III) sorption to the GMZ bentonite was studied by batch technique under ambient conditions. The sorption of Eu(III) on GMZ bentonite was strongly dependent on pH and independent of ionic strength. The sorption of Eu(III) on GMZ bentonite was mainly dominated by surface complexation rather than by ion exchange. The presence of HA enhanced Eu(III) sorption at low pH values, but decreased Eu(III) sorption at high pH values. The enhanced sorption of Eu(III) on GMZ bentonite at low pH was attributed to the strong complexation of Eu(III) with surface adsorbed HA on GMZ bentonite and the reduced sorption of Eu(III) at high pH was attributed to the formation of soluble HA–Eu complexes in aqueous solution. The strong sorption of Eu(III) on GMZ bentonite suggested that the GMZ bentonite could be used as the backfill material in nuclear waste disposal.

Restricted access

Abstract  

Herein, the sorption properties of Eu(III) on Na-attapulgite were performed by using batch sorption experiments under different experimental conditions, such as contact time, pH, ionic strength, humic acid and temperatures. The results indicated that the sorption of Eu(III) on Na-attapulgite was strongly dependent on pH and temperature. At low pH values, the sorption of Eu(III) was influenced by ionic strength, whereas the sorption was not affected by ionic strength at high pH values. The sorption of Eu(III) was mainly dominated by ion exchange or outer-sphere surface complexation at low pH values, and by inner-sphere surface complexation or surface precipitation at high pH values. The sorption of Eu(III) onto Na-attapulgite increased with increasing temperature. The Langmuir and Freundlich models were applied to simulate the sorption isotherms, and the results indicated that the Langmuir model simulated the sorption isotherms better than the Freundlich model. The thermodynamic parameters (∆G o, ∆S o, ∆H o) were calculated from the temperature dependent sorption isotherms at 293, 313 and 333 K, respectively, and the results indicated that the uptake of Eu(III) on Na-attapulgite was an endothermic and spontaneous process. The results of high Eu(III) sorption capacity on Na-attapulgite suggest that the attapulgite is a suitable material for the preconcentration and immobilization of Eu(III) ions from large volumes of aqueous solutions.

Restricted access

Abstract  

In this paper, the sorption of Co(II) from aqueous solution to Ca-montmorillonite was studied under ambient conditions by using batch technique. The effects of contact time, solid content, pH, ionic strength and temperature on the sorption of Co(II) to Ca-montmorillonite was also investigated. The results indicated that the sorption of Co(II) was strongly dependent on pH values. The sorption was dependent on ionic strength at low pH values, but independent of ionic strength at high pH values. Outer-sphere surface complexes were formed on the surface of Ca-montmorillonite at low pH values, whereas inner-sphere surface complexes were formed at high pH values. The Langmuir, Freundlich and Dubinin–Radushkevich (D–R) models were used to simulate the sorption isotherms of Co(II) at three different temperatures. The thermodynamic parameters (ΔH 0, ΔS 0 and ΔG 0) were calculated from the temperature dependent sorption isotherms, and the results indicated that the sorption reaction of Co(II) to Ca-montmorillonite was an endothermic and spontaneous process. The high sorption capacity of Co(II) on Ca-montmorillonite suggests that the Ca-montmorillonite is a suitable material for the preconcentration and solidification of radiocobalt from aqueous solutions.

Restricted access

Abstract  

The sorption of Eu(III) on calcareous soil as a function of pH, humic acid (HA), temperature and foreign ions was investigated under ambient conditions. Eu(III) sorption on soil was strongly pH dependent in the observed pH range. The effect of ionic strength was significant at pH < 7, and not obvious at pH > 8. The type of salt cation used had no visible influence on Eu(III) uptake on soil, however at low pH values, the influence of anions was following the order: Cl ≈ NO3  > ClO4 . In the presence of HA, the sorption edge obviously shifted about two pH units to the lower pH, whilst in range of pH 6–7, the sorption of Eu(III) decreased with increasing pH because a considerable amount of Eu(III) was present as humate complexes in aqueous phase, then increased again at pH > 11. The results indicated that the sorption of Eu(III) on soil mainly formed outer-sphere complexes and/or ion exchange below pH ~7; whereas inner-sphere complexes and precipitation of Eu(OH)3(s) may play main role above pH ~8.

Restricted access

Abstract  

Bentonite has been studied extensively because of its strong sorption and complexation ability. Herein, GMZ bentonite from Gaomiaozi county (Inner Mongolia, China) was investigated as the candidate of backfill material for the removal of Th(IV) ions from aqueous solutions. The results indicate that the sorption of Th(IV) is strongly dependent on pH and ionic strength at pH < 5, and independent of ionic strength at pH > 5. Outer-sphere surface complexation or ion-exchange are the main mechanism of Th(IV) sorption on GMZ bentonite at low pH values, whereas the sorption of Th(IV) at pH > 5 is mainly dominated by inner-sphere surface complexation or surface precipitation. Soil fulvic acid (FA) and humic acid (HA) have a positive influence on the sorption of Th(IV) on bentonite at pH < 5. The different addition sequences of HA and Th(IV) to GMZ bentonite suspensions have no obvious effect on Th(IV) sorption to HA-bentonite hybrids. The high sorption capacity of Th(IV) on GMZ bentonite suggests that the GMZ bentonite can remove Th(IV) ions from large volumes of aqueous solutions in real work.

Restricted access

Abstract  

Sorption of U(VI) from aqueous solution to Na-attapulgite was investigated at different experimental chemistry conditions by using batch technique. The attapulgite sample was characterized by FTIR and XRD. Sorption of U(VI) on attapulgite was strongly dependent on pH and ionic strength. The sorption of U(VI) on attapulgite increased quickly with rising pH at pH < 6, and decreased with increasing pH at pH > 7. The presence of humic acid (HA) enhanced the sorption of U(VI) on attapulgite obviously at low pH because of the strong complexation of surface adsorbed HA with U(VI) on attapulgite surface. Sorption of U(VI) on attapulgite was mainly dominated by ion exchange and/or outer-sphere surface complexation at low pH values, whereas the sorption was attributed to the inner-sphere surface complexation or precipitation at high pH values. The sorption increased with increasing temperature and the thermodynamic parameters calculated from the temperature dependent sorption isotherms suggested that the sorption of U(VI) on attapulgite was a spontaneous and endothermic process. The results indicate that attapulgite is a very suitable material for the preconcentration of U(VI) ions from large volumes of aqueous solutions.

Restricted access

Abstract  

The extraction of Co2+ by a mixture of acetylacetone (acac) and pyridine (py) from an aqueous phase of varying ionic strengths has been investigated. The extraction studies were done at different temperatures in order to determine the effect of changes in the ionic strength on the free energy ΔG, enthalpy ΔH and entropy ΔS of the synergistic reaction.

Restricted access

Abstract  

Binding constants of Eu(III)- and Am(III)-complexes with soil-derived humic acid were determined by solvent extraction at various pH and ionic strength. Based on the dependence of binding constants on pH and ionic strength, stabilities of the humate complexes in land water and seawater were estimated. Speciation calculation based on the binding constants indicated that Am(III) could combine with humic substances in natural water system.

Restricted access