Search Results

You are looking at 1 - 10 of 55 items for :

  • "Kinetic triplet" x
  • All content x
Clear All

Abstract  

Reliable kinetic information for thermal analysis kinetic triplets can be determined by the comparative method: (1) An iterative procedure or the KAS method had been established to obtain the reliable value of activation energy E a of a reaction. (2) A combined method including Coats-Redfern integral equation and Achar differential equation was put forward to confirm the most probable mechanism of the reaction and calculate the pre-exponential factor A. By applying the comparative method above, the thermal analysis kinetic triplets of the dehydration of CaC2O4H2O were determined, which apparent activation energy: 813 kJ mol-1, pre-exponential factor: 4.51106-1.78108 s-1, the most probable mechanism function: f(α)=1 or g(α)=α, which the kinetic equation of dehydration is dα/dt=Ae-E a /RT.

Restricted access

Abstract  

Temperature programmed combustions (TPC) of Yang-Quan anthracite, Liao-Cheng lean coal and Li-Yan bituminous coal in oxy-fuel atmosphere were conducted in a thermogravimetric analyzer and characteristic parameters were deduced from the TG-DTG curves. The results showed that combustion got harder to progress as the coalification degree increasing. Within range of 40%, effect of heightening O2 concentration favored the combustion process, but beyond this zone, the effect leveled off. The model-fitting mathematical approach was used to evaluated the kinetic triplet (f (α), E, A) through Coats–Redfern method. The calculation showed that D 3-Jander was the proper reaction model and the evaluations of E and A validated the experimental results.

Restricted access

recommended as a trustworthy were adopted for kinetic analysis. The basic assumption of the model-free method is that the kinetic triplet is independent on the heating rate. The activation energy values calculated by this method are independent of any implicit

Restricted access

rates that the data were collected to calculate the values of kinetics and thermodynamic parameters according to the Eqs. 1 – 6 . A summary of the parameters obtained in this calculation, including kinetic triplet parameters ( E a , A , n ) and

Restricted access

strongly emphasized on the fact that kinetics of thermal degradation of a solid are most often multi-step reaction process and should not be described by a single kinetic triplet and therefore, single heating rate based model-fitting methods should be

Restricted access

degradation of the materials. Kinetics analysis Integral non-isothermal kinetic analysis was used to determine the kinetic triplet ( A —pre-exponential factor, E —activation energy and g ( α )—integral function of degree

Restricted access

Heteroleptic cadmium(II) complex, potential precursor for semiconducting CDS layers

Thermal stability and non-isothermal decomposition kinetics

Journal of Thermal Analysis and Calorimetry
Authors: Anna Kropidłowska, A. Rotaru, M. Strankowski, Barbara Becker, and E. Segal

Abstract  

Coordination compounds may be used as efficient precursors for fabrication of semiconducting layers. Thermal stability of such a potential precursor — [Cd{SSi(O-tBu)3}(S2CNEt2)]2 — was investigated (tBu means tert-butyl and Et means ethyl). The kinetic study was performed by means of different multi-heating rate methods: isoconversional (Flynn-Wall-Ozawa, Kissinger-Akahira-Sunose and Friedmann) methods associated with the criterion of the independence of the activation parameters on the heating rate. The kinetic triplet of the non-isothermal decomposition of this Cd(II) complex was established.

Restricted access

Abstract  

The kinetics of protein thermal transition is of a significant interest from the standpoint of medical treatment. The effect of sucrose (0–15 mass%) on bovine serum albumin denatured aggregation kinetics at high concentration was studied by the iso-conversional method and the master plots method using differential scanning calorimetry. The observed aggregation was irreversible and conformed to the simple order reaction. The denaturation temperature (T m), the kinetic triplets all increased as the sucrose concentration increased, which indicated the remarkable stabilization effect of sucrose. The study purpose is to provide new opportunities in exploring aggregation kinetics mechanisms in the presence of additive.

Restricted access

Computational thermal and kinetic analysis

Software for non-isothermal kinetics by standard procedure

Journal of Thermal Analysis and Calorimetry
Authors: A. Rotaru, M. Goşa, and P. Rotaru

Abstract  

A software package to determine the non-isothermal kinetic parameters of heterogeneous reactions has been developed. The dynamic handle of conversion degree step and ranges, heating rates and kinetic models makes the evaluation of the activation parameters much faster. The standard procedure: ‘model-free’ kineitc, IKP and Perez-Maqueda et al. methods, is applied for the determination of the kinetic triplet corresponding to thermal induced transformations. The software is designed mainly for thermogravimetric, temperature programmed reduction and dilatometry data processing, but may also import already transformed numeric data.

Restricted access

Abstract  

The thermal decomposition of three new reagent cyclohexylamine-p-tolylglyoxime (L1H2), tertiarybutyl amine-p-tolylglyoxime (L2H2) and secondary butylamine-p-tolylglyoxime (L3H2 and their Co-complexes were studied by both isothermal and nonisothermal methods. As expected, the complex structure of Co-complexes, different steps with different activation energies were realized in decomposition process. Model-fitting and model-free kinetic approaches were applied to nonisothermal and isothermal data. The kinetic triplet (f(α), A and E) related to nonisothermal model-fitting method can not be meaningfully compared with values obtained from isothermal method. The complex nature of the multi-step process of the studied compounds was more easily revealed using a wider temperature range in nonisothermal isoconversional method.

Restricted access