Search Results
Spillovers from foreign direct investment in Central and Eastern Europe
An index for measuring a country’s potential to benefit from technology spillovers
In the paper, we construct a composite indicator to estimate the potential of four Central and Eastern European countries (the Czech Republic, Hungary, Poland and Slovakia) to benefit from productivity spillovers from foreign direct investment (FDI) in the manufacturing sector. Such transfers of technology are one of the main benefits of FDI for the host country, and should also be one of the main determinants of FDI incentives offered to investing multinationals by governments, but they are difficult to assess ex ante. For our composite index, we use six components to proxy the main channels and determinants of these spillovers. We have tried several weighting and aggregation methods, and we consider our results robust. According to the analysis of our results, between 2003 and 2007 all four countries were able to increase their potential to benefit from such spillovers, although there are large differences between them. The Czech Republic clearly has the most potential to benefit from productivity spillovers, while Poland has the least. The relative positions of Hungary and Slovakia depend to some extent on the exact weighting and aggregation method of the individual components of the index, but the differences are not large. These conclusions have important implications both the investment strategies of multinationals and government FDI policies.
It is demonstrated that models of royalty rate calculations developed for licensing should not be applied to franchising because the benefits received by a licensee and a franchisee are different. It is proposed that the risk reduction generated by the franchisor’s effective technologies and the managerial support given to a franchisee also be included in the model of royalty calculation. It is demonstrated that a franchisee may wish to acquire the franchise even if the franchisor takes the full amount of additional income or if this additional income is negative.
The use of mature embryos as explants to initiate cultures is a best alternative to save time and costs, especially for producing somatic embryos for genetic transformation of durum wheat. However, plantlets regeneration from cultures derived from matured embryos is usually low. In this study, we tested matured embryos as explants from eight Moroccan durum wheat varieties (‘Irden’, ‘Marzak’, ‘Kyperounda’, ‘Isly’, ‘Amria’, ‘Karim’, ‘Marouane’ and ‘Tomouh’) to define suitable culture media for obtaining high frequencies of somatic embryogenesis and in vitro plantlets regeneration. For this purpose, we tested five induction and maintenance media (M1 to M5) based on MS media (macro and oligo-elements) which differed with respect to concentrations of plant hormones (2,4-D and BA), vitamins, sucrose, maltose, L-asparagine, and solidifying agents. All tested media induced embryogenic callus for the varieties and regenerate plantlets. However, a significant effect of variety, medium and variety × medium interaction were observed for callus induction and regeneration. Average callus growth as measured by relative fresh weight growth rate (RFWGR) across different media was the highest for ‘Amria’ (7215.4%) and the lowest for ‘Tomouh’ (2088.2%). M1 (2 mg/L 2,4-D) and M5 (3 mg/L 2,4-D) media gave highest RFWGR(6892.1% and 6332%, respectively) and M3 (1 mg/L 2,4-D) was the lowest (3708.8%), across different varieties. However, the embryogenic callus from M3 media regenerated the highest percentage of plantlet, upon transfer to regeneration medium, for most of the varieties. For the varieties ‘Marouane’, ‘Kyperounda’, ‘Marzak’, ‘Karim’, and ‘Tomouh’, the favourable medium was M3, whereas, for ‘Isly’, ‘Irden’ and ‘Amria’, both M2 (2.5 mg/L BA and 2.5 mg/L 2,4-D) and M3 were the favourable media for embryogenic callus induction. In this study, for the first time, favourable media for induction and regeneration from mature embryo of Moroccan durum wheat varieties were identified. These media will be used for callus induction and genetic transformation.
Because of the effect of photoperiod on physiological and biochemical processes in fish, this study aimed to evaluate the effect of manipulated photoperiod on growth, feed conversion and survival of wild carp, Cyprinus carpio. Fish received six photoperiod regimes (light:dark cycle) including: natural photoperiod (control), 24L:0D, 16L:8D, 12L:12D, 8L:16D and 0L:24D by the three replications. Regulated photoperiods as a 16L:8D or 12L:12D light/dark cycle significantly improved growth rate and food conversion ratio of wild carp.
Direct somatic embryo formation (without intervening callus) from garlic clove basal tissue was induced in which the influence of plant growth regulators (PGRs) on various explants was examined. Medium added with 2.0 mg/l 6-benzylaminopurine (BAP) and 0.5 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) were the most effective PGR combination for somatic embryo induction. It induced embryos directly in 85.5% of the basal clove explant. Callus induction was also obtained from other parts of explant and 2.0 mg/l 2,4-D induced callusing in 86.5% of the inoculated explants. Protein, amino acid and alliin content were measured in callus and in embryos. Somatic embryos had more soluble protein and free amino acid compared to callus. HPTLC analysis revealed that alliin was significantly high in somatic embryos compared to undifferentiated callus tissue; the content was even more in older embryos. The present study of Allium indicates that the event of morphogenetic development including in vitro embryogeny can effectively be analysed by monitoring the changes of biochemical profiles.
Abstract
Complexes represented by the general formula [MCl2L2] (M(II)=Zn, Mn, Co) and complexes of [Cu3Cl6L4] and CuSO4L24H2O, CoSO4L23H2O, [ZnSO4L3] where L stands for 3-amino-5-methylpyrazole were prepared. The complexes were characterized by elemental analysis, FT-IR spectroscopy, thermal (TG, DTG, DSC and EGA) methods and molar conductivity measurements. Except for the Zn-complexes, the magnetic susceptibilities were also determined. Thermal decomposition of the sulphato complexes of copper(II) and cobalt(II) and the chloro complexes of cobalt(II) and manganese(II) resulted in well-defined intermediates. On the basis of the IR spectra and elemental analysis data of the intermediates a decomposition scheme is proposed.
Abstract
New mixed-ligand complexes with empirical formulae: Mn(2-bpy)1.5L22H2O, M(2-bpy)2L23H2O (M(II)=Co, Cu), Ni(2-bpy)3L24H2O and M(2,4’-bpy)2L22H2O (where 2-bpy=2,2’-bipyridine, 2,4’-bpy=2,4’-bipyridine; L=HCOO– ) have been obtained in pure solid-state. The complexes were characterized by chemical and elemental analysis, IR and VIS spectroscopy, conductivity (in methanol and dimethylsulfoxide). The way of metal-ligand coordination discussed. The formate and 2,4’-bpy act as monodentate ligands and 2-bpy as chelate ligand. The new complexes with ligand isomerism were identified. During heating the complexes lose water molecules in one or two steps. Thermal decomposition after dehydration is multistage and yields corresponding metal oxides as final products. A coupled TG-MS system was used to analysis principal volatile thermal decomposition (or fragmentation) products of Ni(2,4’-bpy)2(HCOO)22H2O under dynamic air or argon atmosphere.
Abstract
New mixed-ligands complexes with empirical formulae: M(2,4′-bpy)2L2�H2O (M(II)Zn, Cd), Zn(2-bpy)3L2�4H2O, Cd(2-bpy)2L2�3H2O, M(phen)L2�2H2O (where M(II)=Mn, Ni, Zn, Cd; 2,4′-bpy=2,4′-bipyridine, 2-bpy=2,2′-bipyridine, phen=1,10-phenanthroline, L=HCOO−) were prepared in pure solid state. They were characterized by chemical, thermal and X-ray powder diffraction analysis, IR spectroscopy, molar conductance in MeOH, DMF and DMSO. Examinations of OCO− absorption bands suggest versatile coordination behaviour of obtained complexes. The 2,4′-bpy acts as monodentate ligand; 2-bpy and phen as chelating ligands. Thermal studies were performed in static air atmosphere. When the temperature raised the dehydration processes started. The final decomposition products, namely MO (Ni, Zn, Cd) and Mn3O4, were identified by X-ray diffraction.