Search Results

You are looking at 1 - 10 of 21 items for :

Clear All

The main criterion that determines the quality of durum wheat is the degree of suitability for pasta production (pasta-processing quality). In this regard, pigment content and the quantity of oxidative enzymes of durum wheat play important roles in the quality of pasta. It is now possible to examine these features and specify their effects using recently developed genetic markers and spectrophotometric measurement techniques. In the present study, LOX enzyme activity and pigment content are determined using molecular and biochemical scanning. According to the obtained results, Gediz-75, Gdem-12, Line-19, Zenit, Line-7 and Line-20 were determined as the most suitable lines or varieties for the production of quality pasta with regard to LOX enzyme activity. As for pigment content, Kyle, Zenit, Gdem-12, Gdem-2, TMB-1 and TMB-3 showed the highest potential for the production of yellow pasta. When pigment content and LOX enzyme activity were evaluated together, the potential of the Gediz-75, Gdem-12 and Zenit durum wheat varieties and lines to produce yellow pasta products was shown to be very high.

Restricted access

Aoyama, T., Chen, M., Fujiwara, H., Masaki, T., Sawamura, T.: LOX-1 mediates Lysophosphatidylcholine-induced oxidized LDL uptake in smooth muscle cells. FEBS Letters 467 , 217–220 (2000). Sawamura T

Restricted access

Peroxidase (POD) and lipoxygenase (LOX) inactivation temperature and time were investigated on broccoli florets at different blanching treatments. In addition, retention of nutritional components,which reduced POD and LOX activities, was compared. LOX inactivation required 14 min at 70 °C, 6 min at 80 °C, 11/2 min at 90 °C, 1 min at 100 °C water blanching and 1 min for steam blanching, 2 min in microwave without water and 6 min with microwave and water. The highest nutritional content of broccoli was evaluated in microwave blanching without water by comparison to all treatments. The decline of nitrate and nitrite value of broccoli was higher under longer time blanching than under higher temperature blanching.

Restricted access

Fatty acid hydroperoxide-producing lipoxygenase (LOX) and hydroperoxide-degrading glutathione peroxidase (GPOX) enzyme activities were studied in leaves of virus resistant Xanthi-nc and susceptible Samsun-nn tobacco cultivars after inoculation with Tobacco mosaic virus (TMV). Total LOX activity showed a maximum at pH 5.5 in cell-free extracts of uninfected leaves. LOX activity markedly increased at this pH after TMV inoculation, but a substantial induction was detected also in the basic pH range with an emerging peak around pH = 8.5. TMV-elicited LOX induction was weaker and appeared later in Samsun-nn than in Xanthi-nc leaves. GPOX activity was also substantially induced by TMV infection. However, this induction appeared only 4 days post-inoculation in resistant Xanthi-nc plants in tissues surrounding the localized necrotic lesions. In contrast, GPOX activity did not change in TMV-inoculated, susceptible Samsun-nn leaves. Several glutathione S-transferase (GST) isoenzymes also display GPOX activity. The expression of a tau class GST gene was markedly induced by TMV inoculation in Xanthi-nc leaves. This tobacco GST gene was partially cloned and sequenced.

Restricted access

The oxidation of fatty acids, which is responsible for changes in lipid composition, were investigated in a comparative study using the Russian wheat aphid (RWA) (Diuraphis noxia), infested and un-infested resistant (Tugela DN) and close isogenic-susceptible (Tugela) wheat cultivars. LOX, which catalyzes the first step of the lipoxygenase pathway, was selectively induced in the infested resistant wheat. A pathogen-induced oxygenase protein was also found to be induced during the wheat-RWA interaction. The involvement of oxylipins in the RWA resistance response was confirmed by inhibition studies using indomethacin, which is known to inhibit prostanoid biosynthesis in mammalian tissue. Downstream defense reactions, e.g. LOX and POD activities, were inhibited upon indomethacin treatment. These results emphasize the importance of fatty acid oxidation as an essential process for the establishment of a successful defense response in wheat to the RWA.

Restricted access

This study was to determine the gene expression pattern and phenotypic change of Cheongcheong, Nagdong, TN1, and 8 different pedigrees of the CNDH population when WBPH infestation initiated at the reproductive stage of the crop. WBPH infested plants generally showed higher expression level of defense genes compared with the uninfected plants. LOX transcriptional levels in Nagdong and CNDH42-1 did not increase after WBPH feeding at all-time course. Chlorophyll content declined in infested plants compared to their controls, but still CNDH3, CNDH14-2, and CNDH65 were healthier. Heavy and extensive WBPH feeding affected rice yield and grain quality although the infestation started at the reproductive stage.

Restricted access

Soil salinity and sodicity (alkalinity) are serious land degradation issues worldwide that are predicted to increase in the future. The objective of the present study is to distinguish the effects of NaCl and Na2CO3 salinity in two concentrations on the growth, lipoxygenase (LOX) activity, membrane integrity, total lipids, yield parameters and fatty acids (FAs) composition of seeds of sunflower cultivar Sakha 53. Plant growth, LOX activity and malondialdehyde (MDA) content were reduced by salts stresses. On the contrary, salinity and alkalinity stress induced stimulatory effects on membrane permeability, leakage of UV-metabolites from leaves and total lipids of sunflower shoots and roots. Crop yield (plant height, head diameter, seed index and number of seeds for each head) that is known as a hallmark of plant stress was decreased by increasing concentrations of NaCl and Na2CO3 in the growth media. Fatty acid methyl esters (FAME) composition of salt-stressed sunflower seeds varied with different levels of NaCl and Na2CO3.

Restricted access
Cereal Research Communications
Authors: P. Motallebi, S. Tonti, V. Niknam, H. Ebrahimzadeh, A. Pisi, P. Nipoti, M. Hashemi and A. Prodi

Fusarium culmorum is a soilborne fungal pathogen, agent of crown and root rot disease (FCRR), responsible of major economic losses in wheat plants. This host—pathogen interaction, following methyl jasmonate (MeJA) application at the beginning of the necrotrophic stage of infection, has not been previously studied at molecular level. In this study, using real-time quantitative PCR, the emerging role of MeJA in the basal resistance of two bread wheat cultivars against F. culmorum has been investigated. MeJA treatment was dispensed 6 hours after pathogen inoculation (6 hai) to detect the defense response at the beginning of the necrotrophic stage. The expression of phenylalanine ammonia-lyase (PAL), lipoxygenase (LOX), cytochrome P450 (CYP709C1) genes and of some pathogenesis related (PR) genes, including PR3, PR4 and PR9, was examined in both root and crown tissues of the susceptible wheat cultivar Falat and the tolerant cultivar Sumai3. The pathogen responsive defense genes were induced in both cultivars, with a higher level of induction in Sumai3 than in Falat. MeJA treatment reduced the symptoms in cv Falat, whereas no significant effects have been detected in cv Sumai3. In fact, MeJA treatment caused a striking difference in defense gene induction. The genetic change was present in root and crown tissues of both wheat cultivars, demonstrating a systemic signaling pathway. The chemically induced protection correlated with induction of the F. culmorum-responsive genes supports a possible role of jasmonate signaling in regulating basal resistance in wheat–F. culmorum interaction.

Restricted access

13187 Gracia-Alvaro, J. M. (2004) Licofelone-clinical update on a novel LOX/COX inhibitor for the treatment of osteoarthritis. Rheumatology 43, 21

Restricted access
Cereal Research Communications
Authors: Doris Lucyshyn, Shamsozoha Abolmaali, Hanna Weindorfer, Mehrdad Shams, Gerlinde Wiesenberger, Eva Wilhelm, Marc Lemmens and Gerhard Adam

Brunelli, J.P., Pall, M.L. 1993. A series of yeast/Escherichia coli lambda expression vectors designed for directional cloning of cDNAs and cre/lox-mediated plasmid excision. Yeast 9: 1309–1318. Pall M

Restricted access