Search Results

You are looking at 1 - 10 of 18 items for :

  • Refine by Access: All Content x
Clear All

Abstract  

The new polycyclic nitramine 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (HNIW) has been focused as a considerable amount of research recently on investigating its polymorphs, relative stability, and respective reaction chemistry. It is known as CL-20 popularly, CL-20 is a very high-energy and relatively high oxygen balance value crystalline compound whose method of synthesis and detailed performance data are still classified. 5-oxo-3-nitro-1,2,4-triazole (NTO, or nitrotriazolone) was an insensitive molecule comparison general explosives, and the NTO based polymer bonded explosives (PBX) was a low vulnerability explosive. Both energetic materials are all very important high explosives, which is used in a variety of military formulations widely owing to the properties of high energy and desensitization of PBX, many researchers have demonstrated the usefulness of above two energetic materials in explosive component. In this work, the thermal decomposition characteristics of explosives CL-20 and NTO were studied using thermal analytical techniques (TG, DSC), then the compatibility of above two explosives with silicone rubber, and the decomposition kinetic parameters such as activation energies of decomposition, the frequency factor of the decompose reaction are also evaluated by non-isothermal DSC techniques.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors:
Seied Mahdi Pourmortazavi
,
Mehdi Rahimi-Nasrabadi
,
Iraj Kohsari
, and
Seiedeh Somayyeh Hajimirsadeghi

5-Nitro-2,4-dihydro-3 H -1,2,4-triazol-3-one (NTO) has the chemical structure shown in Scheme 2 . This compound posses an appropriate potential for usage as an explosive. Performance characteristics of NTO are similar to those of the widely employed

Restricted access

Abstract  

The single crystal of lead salt of 3-nitro-1,2,4-triazol-5-one (NTO), [Pb(NTO)2(H2O)] was prepared and its structure was determined by a four-circle X-ray diffractometer. The crystal is monoclinic, its space group is P21/n with crystal parameters of a=0.7262(1) nm, b=1.2129(2) nm, c=1.2268(3) nm, =90.38(2)°, V=1.0806(2) nm3, Z=4, D c=2.97 g cm–3, µ=157.83cm–1, F(000)=888. The final R is 0.027. By using SCF-PM3-MO method we obtained optimized geometry for [Pb(NTO)2 H2O] and particularly positions for hydrogen atoms. Through the analyses of MO levels and bond orders it is found that Pb atom bond to ligands mainly with its 6pz and 6py AOs. The thermal decomposition experiments are elucidated when [Pb(NTO)2 H2O] is heated, ligand water is dissociated first and NO2 group has priority of leaving. Based on the thermal analysis, the thermal decomposition mechanism of [Pb(NTO)2 H2O] has been derived. The lattice enthalpy and its lattice energy were also estimated.

Restricted access

Abstract  

From measurements of the enthalpy of solution of metal salts of 3-nitro-1,2,4-triazol-5-one (NTO) in water, the standard enthalpies of formation of KNTO·H2O, Ba(NTO)2·3H2O, LiNTO·2H2O, Ca(NTO)2·4H2O and Gd(NTO)3·7H2O were determined as −(676.9±2.6), −(1627.0±2.5), −(966.6.3±2.2), −(1905.5±4.4) and −(3020.1±6.4) kJ·mol−1, respectively. From measurements of the enthalpy of precipitation of KNTO·H2O crystal with Pb(NO3)2(aq), CuSO4(aq) and Zn(NO3)2(aq), the standard enthalpies of formation of Pb(NTO)2·H2O, Cu(NTO)2·2H2O and Zn(NTO)2·H2O were determined as −(247.4±5.9), −(712.1±5.4) and −(628.8±5.7) kJ·mol−1, respectively.

Restricted access

Abstract  

[Cd(NTO)4Cd(H2O)6]4H2O was prepared by mixing the aqueous solution of 3-nitro-1,2,4-triazol-5-one and cadmium carbonate in excess. The single crystal structure was determined by a four-circle X-ray diffractometer. The crystal is monoclinic, space group C2/c with crystal parameters of a=2.1229(3) nm, b=0.6261(8) nm, c=2.1165(3) nm, β=90.602(7), V=2.977(6) nm3, Z=4, Dc=2.055 gcm−3, μ=15.45 cm−1, F(000)=1824, λ(MoKα)=0.071073 nm. The final R is 0.0282. Based on the results of thermal analysis, the thermal decomposition mechanism of [Cd(NTO)4Cd(H2O)6]4H2O was derived. From measurements of the enthalpy of solution of [Cd(NTO)4Cd(H2O)6]4H2O in water at 298.15 K, the standard enthalpy of formation, lattice energy, lattice enthalpy and standard enthalpy of dehydration have been determined as -(1747.84.8), -2394, -2414 and 313.6 kJ mol−1 respectively.

Restricted access

explosives such as HNS, 2,6-bis(picrylamino)-3,5-dinitropyridine (PYX) and 3-Nitro-1,2,4-triazol-5-one (NTO), Trimethylolethane trinitrate (TMETN), hexanitro-diphenylamine (HND), TNT, 2,6-dinitrotoluene (2,6-DNT), pentaerythritoltetranitrate (PETN), HMX

Open access

Three new rare-earth metal (Pr, Nd and Sm) salt hydrates of 3-nitro-1,2,4-triazol-5-one (NTO) were prepared and characterized. The thermal behaviour of the three salt hydrates, M(NTO)3·nH2O (M=Pr and Nd,n=9;M=Sm,n=8) were studied by means of TG and DSC under conditions of linear temperature increase. The thermal decomposition intermediates were determined by means of IR, MS and X-ray diffraction spectrometry. The thermal decomposition mechanisms of these hydrates were proposed as follows:

Restricted access

Abstract  

The compatibility of 1,3,3-trinitroazetidine (TNAZ) with some energetic components and inert materials of solid propellants was studied by using the pressure DSC method. Where, cyclotetramethylenetetranitroamine (HMX), cyclotrimethylenetrinitramine (RDX), nitrocellulose (NC), nitroglycerine (NG), 1.25/1-NC/NG mixture, lead 3-nitro-1,2,4-triazol-5-onate (NTO-Pb), aluminum powder (Al powder) and N-nitrodihydroxyethylaminedinitrate (DINA) were used as energetic components and hydroxyl terminated polybutadiene (HTPB), carboxyl terminated polybutadiene (CTPB), polyethylene glycol (PEG), polyoxytetramethylene- co-oxyethylene (PET), addition product of hexamethylene diisocyanate and water (N-100), 2-nitrodianiline (2-NDPA), 1,3-dimethyl-1,3-diphenyl urea (C2), carbon black (C.B.), aluminum oxide (Al2O3), cupric 2,4-dihydroxybenzoate (β-Cu), cupric adipate (AD-Cu) and lead phthalate (ϕ-Pb) were used as inert materials. The results showed that the binary systems of TNAZ with HMX, NC, NG, NC+NG and DINA are compatible, with RDX and Al powder are slightly sensitive, with NTO-Pb, β-Cu, AD-Cu, C.B. and Al2O3 are sensitive, and with HTPB, CTPB, PEG, PET, N-100, 2-NDPA, C2 and ϕ-Pb are incompatible.

Restricted access

Abstract  

The thermal decomposition mechanism of hydrazine 3-nitro-1,2,4-triazol-5-one (HNTO) compound was studied by means of differential scanning calorimetry (DSC), thermogravimetry and derivative thermogravimetry (TG-DTG), and the coupled simultaneous techniques of in situ thermolysis cell with rapid scan Fourier transform infrared spectroscopy (in situ thermolysis/RSFTIR). The thermal decomposition mechanism is proposed. The quantum chemical calculation on HNTO was carried out at B3LYP level with 6-31G+(d) basis set. The results show that HNTO has two exothermic decomposition reaction stages: nitryl group break first away from HNTO molecule, then hydrazine group break almost simultaneously away with carbonyl group, accompanying azole ring breaking in the first stage, and the reciprocity of fragments generated from the decomposition reaction is appeared in the second one. The C–N bond strength sequence in the pentabasic ring (shown in Scheme 1) can be obtained from the quantum chemical calculation as: C3–N4 > N2–C3 > N4–C5 > N1–C5. The weakest bond in NTO is N7–C3. N11–N4 bond strength is almost equal to N4–C5. The theoretic calculation is in agreement with that of the thermal decomposition experiment.

Scheme 1 
Scheme 1 

Scheme of HNTO

Citation: Journal of Thermal Analysis and Calorimetry 100, 2; 10.1007/s10973-009-0416-6

Restricted access

. R udenko , S zergej I. / Р уденко , С ергей И. 1960 Культура населения Центрального Алтая в скифское время . Москва–Ленинград. S alo , U nto

Restricted access