Search Results

You are looking at 1 - 10 of 18 items for :

  • "Orlicz space" x
  • Refine by Access: All Content x
Clear All

. [3] GUSTAVSSON , J ., PEETRE , J . Interpolation of Orlicz spaces . Studia Math . 60 ( 1977 ), 33 – 59 . [4] SHESTAKOV , V. A . Transformations of Banch lattics and the interpolation of linear operators . Bull. Polish Sci. Math . 29

Open access

, On products of Orlicz spaces . Math. Ann ., 140 : 174 – 186 , 1960 . [6] C . Bennett and

Restricted access

Abstract  

Let Φ(t)= ∫_0^t a(s) ds and Ψ(t)= ∫_0^t b(s) ds, where a(s) is a positive continuous function such that ∫_0^1 \frac{a(s)}{s} ds < ∞and ∫_1^{\∞}\frac{a(s)}{s} ds= +\∞, and b(s) is an increasing function such that \lim_{s\to\∞}b(s)= +\∞. Letw be a weight function and suppose that w∈A1\∩ A'. Then the following statements for the Hardy-Littlewood maximal function Mf(x) are equivalent:(I) there exist positive constants C 1 and C 2 such that

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\int_0^s {\frac{{a\left( t \right)}}{t}dt \geqq } C_1 b\left( {C_2 s} \right)foralls > 0;$$ \end{document}
(II) there exist positive constants C 3 and C 4 such that
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\int {_{R^n } } \Psi \left( {C_3 \left| {f\left( x \right)} \right|} \right)w\left( x \right)dx \leqq C_4 \int {_{R^n } } \Phi \left( {Mf\left( x \right)} \right)w\left( x \right)dxforallf \in {\mathcal{R}}_0 \left( w \right)$$ \end{document}

Restricted access
Restricted access

. 2007 Sharp Marchaud and converse inequalities in Orlicz spaces Proc. Amer. Math. Soc. 135 1115 – 1121 10.1090/S0002-9939-06-08682-5 . [17] Dunkl , C. F. , Xu , Y. 2001 Orthogonal

Restricted access

The maximal Orlicz spaces such that the mixed logarithmic means of multiple Walsh-Fourier series for the functions from these spaces converge in measure and in norm are found.

Restricted access