Search Results

You are looking at 1 - 10 of 264 items for :

  • "Phase transformation" x
  • Refine by Access: All Content x
Clear All
Journal of Thermal Analysis and Calorimetry
Authors: Stefano Gialanella, Fabrizio Girardi, Gloria Ischia, Ivan Lonardelli, Maurizio Mattarelli, and Maurizio Montagna

, interesting to monitor the evolution of goethite first and, then, of hematite. Fig. 2 Synchrotron radiation diffraction patterns displaying the evolution of the phase transformation of goethite ( G-peaks ) into

Restricted access

Abstract  

This article refers to the mineralogical composition and phase transformations of Greek nickeliferous laterites and to their metallurgical behaviour, during preheating and reduction with carbon monoxide. Transformation of goethite to hematite and decomposition of chlorite and serpentine, were identified during preheating. Higher iron metallization was achieved for the ore in which goethite is the main iron mineral and reduction goes up to 95%, whereas it goes up to 50% for the ore in which hematite is the main iron mineral. The higher reducibility, however, seems to be due to the higher specific surface area of the goethitic type of ore.

Restricted access

Abstract  

An increase of the specific surface area of solid phases is often desirable e.g. for the bioavailability of pharmaceuticals or in chemical processes. Such an increase can a.o. be achieved by suspending crystalline substances in a solvent that induces phase transformations. Hence, the original substance has to be in a metastable state in the solvent. If the stable phase after transformation has in addition a very low solubility in the solvent, a dendritic growth is forced to occur because of the high local supersaturations during the phase change. This dendritic growth of the stable phase in term leads to needle- or whisker-like crystals, which have the desired larger specific surface area in comparison to the initial crystalline substance.In order to investigate this phenomenon several hydrates of salts were chosen, which undergo phase transformations to their anhydrates accompanied by a corresponding loss of crystal water when suspended in excess in lower alcohols. Consequently, anhydrous forms were created by dehydrating these hydrates. The transformation rate or in this case the dehydration level can thus be indirectly measured by Karl-Fischer titration. The thermodynamic background of the dehydration phenomena can be clarified by solubility studies of the hydrates and anhydrates in water/alcohol-mixtures.

Restricted access

Phase transformations in Cu-12.4% Al and Cu-14.4% Zn-8.4% Al alloys were examined by DTA. The influence of the rate of temperature change on the sequence of phase transformations was studied. It was found that the rates of heating and cooling were the major factors determining the transformations which take place in these alloys.

Restricted access

The influence of the alloying elements magnesium, copper and silicon on phase transformations in Al-60 wt% Zn alloy solidified at rates from 0.4 up to 65 deg/s has been investigated by means of DTA method.

Restricted access

The purpose of this study is to elucidate the nature of the phase transformations of lead monoxide powder. Lead monoxide is prepared by calcination of a lead oxalate precursor salt, and its phase transformations are studied using X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TG). Analysis reveals that the phase transformations observed for oxalate-derived lead monoxide powder are highly dependent on the firing atmosphere. In nitrogen, as the temperature is increased 1 deg/min from room temperature, lead monoxide undergoes a reconstructive litharge-to-massicot phase transformation in a temperature range of 525–575°C. In air, litharge, metastable at room temperature, slowly oxidizes to the Pb3O4 phase at a temperature of 350°C and rapidly reduces to litharge at 560°C. At temperatures greater than 560°C, litharge converts to massicot. With heating rates of 10 deg/min or higher, formation of Pb3O4 is not observed.

Restricted access

Abstract  

Syrian phosphorite is subjected to mechanochemical activation carried out in planetary mill. Some phase transformations are ascertained by means of powder XRD and thermal analyses. They reveal as partial transformation of carbonate fluorine apatite into carbonate hydroxyl fluorine apatite and formation of Ca(PO3)2, as well. The solubility of the activated sample in 2% citric acid is increased as a result of these changes.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: K. Chrissafis, M. Ozer, E. Vinga, E. Polychroniadis, X. Chatzistavrou, and K. M. Paraskevopoulos

Abstract  

TlSbSe2 monocrystals were grown using the modified Bridgman–Stockbarger method and were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). Reflectivity spectra have been registered in the range 50 to 4000 cm–1 for E parallel to a and E parallel to b polarizations, on the cleavage plane. A remarkable anisotropy at two directions was verified. With regard to previous observations, additional peaks were discriminated and the fundamental phonon parameters were determined using classical dispersion relations. The material presents a complex phase transformation – with two thermal effects – that was examined using differential scanning calorimetry (DSC). Non-isothermal measurements, at different heating and cooling rates (β), were used to study the thermal phenomena. The main effect is attributed to a structural displacement and the second one to a cation exchange procedure. The phase transformation temperature depends strongly on the cooling rate and the peaks are shifted by 30 K with the increase of this rate, on the contrary to the increase of the heating rate that has a smaller effect. Phenomena related with the influence of the previous, repeated heating and cooling cycles on the transformation are also examined and analytically discussed.

Restricted access

Abstract  

The phase transformations of Syrian phosphorite upon mechanochemical activation are examined in the present work. The latter is carried out in planetary mill equipped with 20 mm steel milling bodies and duration from 30 to 300 min. The established by means of DTA, DTG, TG analyses transformation of non-activated carbonate fluorine apatite type B into the carbonate hydroxyl fluorine apatite (COHFAp) mixed type A2-B leads to substantial changes in the properties of the activated samples expressed in lowering the degree of crystallinity, strong defectiveness of the structure, and increase of the citric solubility. The thermal analysis gives evidence for the decomposition of the carbonate-containing component within the phosphorite, as from the positions placed in the vicinity of the hexagonal 63 axis (type A2), as well as from the positions of the phosphate ion (type B), and from the free carbonates. The data from the thermal analysis, the powder X-ray analysis and the infrared spectroscopy give also evidence for phase transformations of the activated apatite (with admixtures of quartz and calcite) into Ca10FOH(PO4)6, β-Ca3(PO4)2, Ca4P2O9, Ca3(PO4)2 · Ca2SiO4 and for that one of the quartz—into larnite and wollastonite. The influence of the α-quartz as a concomitant mineral is considered to be positive. The α-quartz forms Si–O–Si–OH bonds retaining humidity in the solid phase thus facilitating the isomorphous substitution OH → F with the subsequent formation of partially substituted COHFAp. Calcium silicophosphate and Ca4P2O9 are obtained upon its further heating. The presented here results settle a perspective route for processing of low-grade phosphate raw materials by means of tribothermal treatment aiming at preparation of condensed phosphates suitable for application as slowly acting fertilizer components.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Cornelia Marinescu, Ancuta Sofronia, Cristina Rusti, Roxana Piticescu, Viorel Badilita, Eugeniu Vasile, Radu Baies, and Speranta Tanasescu

makes phase transformation one of the most important issues in practical application of the compound. Rutile is the most common, stable and well known mineral of the three phases. Anatase and brookite both transform exothermally and irreversibly

Restricted access