Search Results

You are looking at 1 - 10 of 1,691 items for :

  • "Phosphate" x
  • Refine by Access: All Content x
Clear All

Introduction Over the past 20–25 years, the metal phosphates (primarily the tetravalent metal phosphates) have been extensively studied because of their potential use in catalysis, in ion exchange, and in phase separation [ 1

Restricted access

Introduction Phosphate Ba 0.5 Zr 2 (PO 4 ) 3 belongs to structural family of the mineral kosnarite KZr 2 (PO 4 ) 3 [ 1 , 2 ]. These phosphates possess high chemical, thermal and radiation stability, low thermal expansion

Restricted access

Abstract  

Heavy metals like the actinides possess a high risk potential to the environment not only because of their radiotoxicity but also due to their chemical toxicology. Uranium as one of the major actinide elements has to be considered in particular. Under reducing conditions, tetravalent uranium occurs primarily in the environment. To date, a lack of appropriate analytical techniques that featured sufficient sensitivity made it difficult to study the aqueous phosphate chemistry of uranium(IV) as such complexes show only low solubility. A novel time-resolved laser fluorescence spectroscopy system was set up recently and optimized to do research on uranium(IV). By application of this laser system we could successfully study uranium(IV) phosphate in concentration ranges where no precipitation or formation of colloids occurred. At pH = 1.0, U4+ and one uranium(IV) phosphate complex existed in parallel in aqueous solution. The complex could be identified as [U(H2PO4)]3+. Determination of its corresponding complex formation constant via two different evaluation methods resulted in the finding of (1)
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\log \beta_{121}^{ \circ } = 2 6. 3 7 \pm 0. 7 6$$ \end{document}
and (2)
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\log \beta_{121}^{ \circ } = 2 6. 4 3 \pm 0. 2 3$$ \end{document}
. Both values prove that [U(H2PO4)]3+ is a very stable complex in solution under experimental conditions. As they are in very good agreement with each other, the total complex formation constant was determined by means of the weighted average out of (1) and (2). It was calculated to be
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\log \beta_{121}^{ \circ } = 2 6. 4 2 \pm 0. 2 2$$ \end{document}
.
Restricted access

Abstract  

The tetravalent and hexavalent uranium content of three Egyptian phosphate type ore samples namely; Sebayia, Abu Tartur and Qatrani have been studied through selective leaching by hydrochloric acid at normal, oxidized and reduced conditions at an amount of hydrochloric acid less than the stoichiometric value i.e. before phosphoric acid production. Oxidizing condition is attained by incorporating 2% of manganese dioxide in the leaching cycle, whereas reducing condition is attained by adding 2% iron powder. The achieved results show that the amount of tetravalent uranium varies between 5 and 95%. As soon as the achieved stoichiometric value of hydrochloric acid is sufficient to produce phosphoric acid both tetravalent and hexavalent uranium dissolve by virtue of phosphoric acid complexing power for uranium. The chemical form of uranium in the ore determines the type of solvent needed to recover it.

Restricted access

Abstract  

Five column experiments have been carried out to investigate the effect of flow rate on the breakthrough curves (BTCs) of phosphate, fulvic acid, and uranium(VI) onto a silica column. Both BTCs of phosphate and fulvic acid, and three BTCs of uranium(VI) in the presence and absence of phosphate or fulvic acid at high flow rate published in the previous paper [<cite>1</cite>] were compared with corresponding initial parts of BTCs at low flow rate in this paper. Each BTC in this paper was expressed as both C/Co–t and C/Co–V/Vo plots, where C and Co are the concentrations in the influent and the effluent respectively, t and V are the time and the effluent volume from the start of injection of pulse solution respectively, Vo is the pore volume of the SiO2 column. Based on the experimental results and the relationship among V, t, and flow rate F, it was found that there are advantages to using C/Co–V/Vo plot as BTC to study the effect of flow rate. Based on these comparisons of C/Co–V/Vo plots at different flow rates and the theoretical analysis from the Bohart–Adams sorption model, it was found that the right shift (increase in V/Vo of breakthrough), the left shift (decrease in V/Vo of breakthrough), and the non-shift (non-change in V/Vo of breakthrough) of initial parts of BTCs with increasing flow rate are certain to occur instead of only left shift and that three different trends of shifts can be mainly attributed to different rate-controlling mechanisms of sorption process.

Restricted access

Introduction The mineral ardealite is known as a cave mineral and has been found in many caves worldwide [ 1 – 6 ]. Phosphates have been known to exist in the Jenolan Caves for a very long time [ 7 – 9 ]. Dating of clays in

Restricted access

Abstract  

We have performed a large number of batch sorption experiments of uranyl onto SiO2 and examined the effects of nitrate or ionic strength, phosphate, fulvic acid(FA), phthalic acid (PH), salicylic acid (SA), and catechol (CA) on the uranyl sorption onto SiO2. Three sorption edges and three sorption isotherms at ionic strengths 0.05, 0.1, and 0.5 mol/L KNO3 were used to investigate the effect of ionic strength or nitrate on the sorption and the Langmuir, Freundlich, and Dubinin-Radushkevich models are used to simulate the sorption isotherms, respectively. Five sorption edges in the presence of phosphate, FA, PH, SA, and CA were compared with that in the absence of complexing ligand. The results suggest that the effect of complexation of uranyl with nitrate on the uranyl sorption can be negligible and the sorption can be described Freundlich and D-R model very well. The positive effect of phosphate on the uranyl sorption was found, though the extent of effect was decreased with increasing pH. The positive effect and the negative effect of FA on the uranyl sorption were found at low pH and high pH ranges, respectively. The sorption edge of uranyl sorption remained unaffected in the presence of PH in the pH 2–10. In the presence of SA, the no effect and the negative effect on the uranyl sorption were, respectively, found at low pH and high pH ranges. The negative effect of CA on the uranyl sorption was found in the pH 2–10.

Restricted access

diagnostic soil properties on actual and potential cation exchange capacity (CEC) in andisols and andic soils. Commun. Soil Sci. Plant Anal. 24. (19–20) 2569–2584. Füleky, Gy. & Jakab, S., 2007. Phosphate

Restricted access

Fernández, L. A., Zalba, P., Gómez, M. A., Sagardoy, M. A.: Phosphate-solubilization activity of bacterial strains in soil and their effect on soybean growth under greenhouse conditions. Biol Fertil Soils 43

Restricted access

of conditions. Historically, a number of liquids including hydrocarbons, glycols, and emulsions of various types have been used as hydraulic fluids. Among the most useful have been poly(ether)s and triaryl phosphates. Among the poly(ether)s, poly

Restricted access