# Search Results

## You are looking at 1 - 3 of 3 items for :

• "Secondary 05C40"
• Refine by Access: All Content
Clear All

# Variations on a theorem of Petersen

Periodica Mathematica Hungarica
Authors: K. S. Bagga, L. W. Beineke, G. Chartrand, and O. R. Oellermann
For an (r − 2)-edge-connected graphG (r ≥ 3) for orderp containing at mostk edge cut sets of cardinalityr − 2 and for an integerl with 0 ≤l ≤ ⌊p/2⌋, it is shown that (1) ifp is even, 0 ≤k ≤ r(l + 1) − 1, and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathop \sum \limits_{v \in V(G)} |\deg _G v - r|< r(2 + 2l) - 2k$$ \end{document}
, then the edge independence numberβ 1 (G) is at least (p − 2l)/2, and (2) ifp is odd, The sharpness of these results is discussed.
Restricted access

# Embedding theorems for graphs establishing negative partition relations

Periodica Mathematica Hungarica
Authors: P. Erdős and A. Hajnal
Restricted access

# Additivity of the crossing number of graphs with connectivity 2

Periodica Mathematica Hungarica
Author: J. Širáň

## Abstract

We prove that the crossing number of graphs with connectivity 2 has in certain cases an additive property analogous to that of crossing number of graphs with connectivity ≤1.

Restricted access