Search Results

You are looking at 1 - 2 of 2 items for :

  • "Sedge meadows" x
  • All content x
Clear All

A prediction from the herbivore optimization hypothesis is that for every combination of site/habitat type and plant community type there is a grazing intensity that causes a maximum increase in above-ground net primary productivity compared with the ungrazed control. NPP is defined as the rate of change in green, herbaceous biomass per unit time per unit area. We tested this hypothesis in the primary summer range of  a growing population of wood bison (Bison bison athabascae) within the Mackenzie Bison Sanctuary, Northwest Territories, Canada. Plots (0.5 x 0.5 m) in graminoid meadows dominated by awned sedge (Carex atherodes) were either clipped at 3 cm, exposed to wood bison grazing, temporarily protected for 3 weeks, or permanently protected. This resulted in the removal of 100%, 0-79%, 0-79% or 0%, respectively, of shoot tissue available to wood bison. NPP of meadows clipped twice at 3 cm in 1986 was the same as control NPP at 5 study sites. In 1987, only the 2 most productive study sites of 1986 were intensively examined: plots clipped once in early summer increased in NPP by 120% and 133% compared to controls; NPP of meadows grazed by wood bison increased by 200% compared to controls at the most productive site, but remained the same as controls at the less productive site. Therefore, the herbivore optimization hypothesis was accepted at the 2 most productive sites in 1987, but rejected at all 5 study sites in 1986. In 1987, the standing crop of dead material was 258% and 142% higher in controls than in grazed plots at the 2 most productive sites. We think this dead material was responsible for the lower NPP observed in control plots.

Restricted access

Plant biomass production, soil chemical and microbial parameters, microbial processes of C and N cycle and gases emissions were studied in soils at two types of grasslands (wet meadows). Both sites are situated in the Czech Republic: (1) a nutrient poor sedge meadow on organic soil (Z) and (2) a mesotrophic sedge-sweet grass meadow on mineral soil (H). Eutrophication was simulated by the application of NPK fertilizer to selected permanent plots in 2006 and 2007 in amounts of 9 kg N + 4 kg P ha −1 year −1 (low dose) and 45 kg N + 20 kg P ha year (high dose). After two years of fertilizer application, we observed an increase in net aboveground plant production (about 9–12 kg ha −1 year ) connected with an increase in shoot:root ratio in fertilized plots of both sites, with more pronounced changes in oligotrophic sedge meadow. Total CO 2 efflux from the ecosystem measured in situ was significantly higher at fertilized plots as well as increase in total soil respiration in case of sedge meadow, but we found no significant effect of fertilization on CO 2 efflux from the system at mesotrophic site. Surprisingly, other parameters, like soil microbial biomass C and N content, the rates of respiration, denitrification, nitrification, nitrogen mineralization and nitrogen assimilation were not affected by fertilization. In conclusion, an interesting finding is that despite non significant impact on aboveground component there were significant responses in belowground part which suggest that belowground processes may be suitable early warning signals. Peaty oligotrophic soil seems to be more sensitive to nutrient addition than mineral soil. However, final effect of fertilization on ecosystem C balance stays unknown and longer study is necessary to draw explicit conclusion.

Restricted access