Search Results

You are looking at 1 - 10 of 137 items for :

  • "Thermochemistry" x
  • Refine by Access: All Content x
Clear All
Journal of Thermal Analysis and Calorimetry
Authors: Ricardo Picciochi, Hermínio Diogo, and Manuel Minas da Piedade

Abstract  

Combustion calorimetry, Calvet-drop sublimation calorimetry, and the Knudsen effusion method were used to determine the standard (p o = 0.1 MPa) molar enthalpies of formation of monoclinic (form I) and gaseous paracetamol, at T = 298.15 K:
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ cr I}}} \right) = - ( 4 10.4 \pm 1. 3){\text{ kJ}}\;{\text{mol}}^{ - 1}$$ \end{document}
and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ g}}} \right) = - ( 2 80.5 \pm 1. 9){\text{ kJ}}\;{\text{mol}}^{ - 1} .$$ \end{document}
From the obtained
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ cr I}}} \right)$$ \end{document}
value and published data, it was also possible to derive the standard molar enthalpies of formation of the two other known polymorphs of paracetamol (forms II and III), at 298.15 K:
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ crII}}} \right) = - ( 40 8.4 \pm 1. 3){\text{ kJ}}\;{\text{mol}}^{ - 1}$$ \end{document}
and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ crIII}}} \right) = - ( 40 7.4 \pm 1. 3){\text{ kJ}}\;{\text{mol}}^{ - 1} .$$ \end{document}
The proposed
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ g}}} \right)$$ \end{document}
value, together with the experimental enthalpies of formation of acetophenone and 4′-hydroxyacetophenone, taken from the literature, and a re-evaluated enthalpy of formation of acetanilide,
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{ON}},{\text{ g}}} \right) = - ( 10 9. 2\,\pm\,2. 2){\text{ kJ}}\;{\text{mol}}^{ - 1} ,$$ \end{document}
were used to assess the predictions of the B3LYP/cc-pVTZ and CBS-QB3 methods for the enthalpy of a isodesmic and isogyric reaction involving those species. This test supported the reliability of the theoretical methods, and indicated a good thermodynamic consistency between the
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta_{\text{f}} H_{\text{m}}^{\text{o}}$$ \end{document}
(C8H9O2N, g) value obtained in this study and the remaining experimental data used in the
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta_{\text{r}} H_{\text{m}}^{\text{o}}$$ \end{document}
calculation. It also led to the conclusion that the presently recommended enthalpy of formation of gaseous acetanilide in Cox and Pilcher and Pedley’s compilations should be corrected by ~20 kJ mol−1.
Restricted access

Abstract  

The standard (pº = 0.1 MPa) molar enthalpies of formation in the condensed state of chromone-3-carboxylic acid and coumarin-3-carboxylic acid were derived from the standard molar energies of combustion in oxygen at T = 298.15 K, measured by combustion calorimetry. The standard molar enthalpies of sublimation were obtained by Calvet microcalorimetry. From these values the standard molar enthalpies in the gaseous phase, at T = 298.15 K, were derived. Additionally estimates of the enthalpies of formation, of all the studied compounds in gas-phase, were performed using DFT and other more accurate correlated calculations (MCCM and G3MP2), together with appropriate isodesmic, homodesmic or atomization reactions. There is a reasonable agreement between computational and experimental results.

Restricted access

Abstract  

The [InCl3(L)n] (where L is 2,2′-bipyridine (bipy), 2,2′-bipyridine N,N′-dioxide (bipyNO), N,N-dimethylacetamide (dma), urea (u), thiourea (tu) or 1,1,3,3-tetramethylthiourea (tmtu); n = 1.5, 3 or 4) were synthesized and characterized by melting points, elemental analysis, thermal analysis and IR spectroscopy. The enthalpies of dissolution of the adducts, Indium(III) chloride and ligands in 1.2 M aqueous HCl were measured and by using thermochemical cycles, the following thermochemical parameters for the adducts have been determined: the standard enthalpies for the Lewis acid/base reactions (Δr H θ), the standard enthalpies of formation (Δf H θ), the lattice standard enthalpies (ΔM H θ), and the standard enthalpies of decomposition (ΔD H θ).

Restricted access

, Waliszewski , D . Enthalpic pair interaction coefficients in DMF solution. Part 3. Thermochemistry of NaI solutions in mixtures of N,N -dimethylformamide with urea, formamide, acetamide and N,N -dimethylacetamide at 298.15K . J Therm Anal . 1996 ; 47

Open access

Abstract  

Thermochemistry of crystal phase formation in vitrified municipal and hospital waste combustion ash and Ca, Fe pyroxene crystallization mechanism are presented. Pyroxene structure is capable of accumulate heavy metals and toxicants contained in ash. Due to this vitrification and crystallization is one of most effective method of immobilization dangerous contaminant of waste.

Restricted access

Abstract  

The advantages of using diodes as thermal sensors in solution thermochemistry are discussed and a simple, low-cost circuit for the use of diodes as temperature sensors is reported. In preliminary studies, the titration of TRIS and hydrochloric acid is used to compare the precision of thermistors and diodes in thermometric titrimetry. Several systems are assayed at various temperatures by enthalpimetric methods to illustrate the advantages of diodes as sensors for monitoring thermal methods capable of being used in quality control system.

Restricted access

Abstract  

Thermochemistry and structural mechanism of crystallization of MgO-Al2O3-SiO2 glasses with TiO2 as crystallization activator were studied. Thermal and HREM investigation proved that near the T g temperature crystallization is going by rearrangement of glass structure elements and part of its components redistribution like at disorder — order phase transition in solid bodies. Nanocrystals of Mg-titanate and high quartz structure solid solution are formed then. Next enstatite and cordierite are crystallizing. Thermochemical and chemical bonds strength analysis indicate that during multistage crystallization of glasses, kind and order of crystal phase formation, is determined by the glass structure decomposition progress and its particular components release accompanying increase of temperature. It has been proved that molar heat capacity change (ΔC p) accompanying the glass transition is the significant measure of degree of changes in the structure of glass preceding crystallization.

Restricted access

. 11. Stoch , L . Thermochemistry of solids with flexible structures . J Therm Anal . 1998 ; 54 : 9 – 24 . 10.1023/A:1010127129729 . 12. Görlich , E . The

Open access

. Bel Hadj Yahia , F , Jemal , M . Synthesis, structural analysis and thermochemistry of B-type carbonate apatites . Thermochim Acta . 2010 ; 505 : 22 – 32 . 10.1016/j.tca.2010.03.017 . 21

Restricted access

Chem Scan A . 1981 ; 35 : 67 – 75 . 10.3891/acta.chem.scand.35a-0067 . 9. Airoldi , C , Chagas , AP , Namora Filho , M . Thermochemistry of dihalide (diacetamide)zinc(II), cadmium

Restricted access