Search Results

You are looking at 1 - 7 of 7 items for :

  • "Total arsenic" x
  • Refine by Access: All Content x
Clear All

Abstract  

Ground water samples obtained from West Bengal, India were analyzed for total arsenic and its inorganic species contents by instrumental neutron activation analysis (INAA). Two anion exchange separation methods using Dowex 1X8 in chloride and acetate forms were standardized for the speciation of As(III) and As(V) using radiotracers. The method by Dowex 1X8 in the acetate form was validated using synthetic mixtures of As(III) and As(V), and applied to water samples; the species concentrations were determined by INAA. The accuracy of the INAA method was evaluated by analyzing the NRCC CRM DORM-2 for total arsenic.

Restricted access

Abstract  

Neutron activation analysis (NAA) methods were employed for the determination of total arsenic, and water soluble As(III) and As(V) compounds in freshwater fish/shellfish and plant samples from Southern Thailand. Total arsenic concentrations varied from 0.05 to 425 mg kg−1. Water soluble arsenic species were separated by solvent extraction using ammonium pyrrolidinedithiocarbamate (APDC)/methylisobutylketone (MIBK) followed by NAA. The water soluble As(III) and As(V) levels varied from 0.07 to 26.4 and 0.03 to 22.9 mg kg−1, respectively. The As(III) and As(V) detection limits were 0.007 for fish/shellfish, 0.005 for As(III) and 0.006 mg kg−1 for As(V) in plants. This separation method allows for the determination of water soluble As(III) and As(V) using commonly available and inexpensive laboratory equipment and chemicals, which can be coupled to a variety of quantification techniques.

Restricted access

Abstract  

A combination of solid phase extraction, coprecipitation, and neutron activation techniques has been used to develop a speciation analysis method based on green chemistry for the major arsenic species in drinking water. Arsenate as As(V), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) are separated and preconcentrated by strongly anion and cation exchange columns in tandem while As(III) remains in the effluent. These species are then selectively eluted and As(III) coprecipitated with bismuth sulphide. This simple method has been applied to the analysis of water reference materials with good results. The detection limits are 0.9, 1.7, 1.6, 3.8 and 16 ng mL−1 for As(III), As(V), MMA, DMA and total arsenic, respectively, using a neutron flux of 2.5 × 1011 cm−2 s−1 at the Dalhousie University SLOWPOKE-2 reactor (DUSR) facility and anti-coincidence gamma-ray spectrometry.

Restricted access

Abstract  

The onion (Allium cepa L.) is one of the most important cultivars in the world and its production level occupies the second place in Venezuela. It becomes important to develop analytical procedures for arsenic determination and to study the effect of this element on the cultures, as well the absorption, transport and translocation processes. A TXRF method for As determination in onions was developed. Two treatments were applied to the onion plants, As contaminated and control. The contaminant was added to the plants to an amount of 100 μg, in a single time 3 weeks after the transplant of plantlets. The green leaves bulbs, and roots together with the stems were separated 45 days after transplant and analyzed by TXRF and HG-AAS for total Arsenic determination. A good agreement was found between these two techniques, demonstrating the accuracy of the TXRF procedure. It was found that the highest concentration corresponded to the root and stems (37 ± 31 μg g−1), followed by the bulbs (11 ± 7 μg g−1), being the smallest level found in the green leaves (4 ± 3 μg g−1). At low As contamination levels of 0.25 μg g−1, a risk for translocation of the toxic element to the edible parts of the onion plants exists. At this level the normal development of the plant is not affected, being the only exception the root length, which is significantly higher in the contaminated treatment.

Restricted access

Abstract  

A pyrolysis-neutron activation analysis (NAA) procedure has been developed and applied to the speciation of arsenic in solid biological samples. The method involves the retention of the inorganic arsenic in the pyrolysis boat by the addition of NaOH, the volatilization and trapping of the organic arsenic on a cation exchange resin and the subsequent NAA of the resin for the determination of the trapped arsenic. The method, developed with the aid of radiochemically labelled arsenic compounds, has been applied to the determination of the ratio of inorganic to organic arsenic species in commercical shrimps as well as in NBS standard reference materials such as oysters and orchard leaves. The results show different relative amounts of inorganic arsenic content in the samples analysed. In the shrings the fraction of inorganic arsenic was of the order of 20%, in the oysters the inorganic arsenic consfituted 60% of the total arsenic concentration while in the samples of vegetable origin more than 98% of the arsenic was of inorganic nature.

Restricted access

Hyperaccumulation and phytoremediation potentials of arsenic by Pteris vittata and P. ensiformis were investigated and documented mainly for ability to clean arsenic contaminated soil sites by both plants in Nigeria. 5.0 kg of soil was air dried, sieved and analysed for the physical and chemical properties and placed inside four plastic pots labelled CT, A, B and C. They were treated with different concentrations of sodium arsenate. One-month-old fernlets of each species was transplanted into each of the soil treatments and left for 12 weeks. Little quantity of water was added to each of these pots every other day. The results showed that P. vittata hyperaccumulated up to 64,132 mg As kg−1 arsenic in the root and 65,747 mg As kg−1 in the frond in all the treatments, while P. ensiformis hyperaccumulated up to 15,662 mg As kg−1 in the root and 15,120 mg As kg−1 in the frond. The total arsenic accumulation was greater in P. vittata than in P. ensiformis and showed no sign of phytotoxicity. Treatment C was lethal to P. ensiformis after four weeks. P. vittata fulfilled all the criteria for classification as a hyperaccumulator and phytoremediator of arsenic contaminated soil in Nigeria. In contrast, P. ensiformis did not satisfy all the criteria because it could not withstand high concentration of arsenic for a long period of time. This study had provided base-line information on the hyperaccumulation status of the two species in Nigeria.

Restricted access

Az arzénnal szennyezett termőterület a világ valamennyi részére kiterjedő globális problémát jelent. Az arzén a növények számára nem esszenciális mikroelem, mely a szennyezett talajon történő növénytermesztés által a növények számára felvehetővé válik. Az arzén felvételének következtében olyan növényfiziológia folyamatok sérülhetnek, melyek súlyos anomáliák kialakulásához vezetnek.

Kutatómunkánk célja növekvő koncentrációjú (0, 3, 10, 30, 90 és 270 mg kg−1) arzénkezelésben részesített talajon termesztett zöldborsó szárazanyag-produktumában bekövetkező változások nyomon követése mellett, az egyes növényi szervek (gyökér, szár, levél, hüvely, szem) arzén-akkumulációs képességének megállapítsa volt. Vizsgáltuk továbbá a talaj arzén-terhelésének hatását a kísérleti növény egyes szerveinek P-tartalmára vonatkozóan is. Munkánk tárgyát képezte továbbá a növekvő koncentrációban arzénnal kezelt talaj „összes“, illetve „oldható“ arzéntartalmának megállapítása.

Arra a következtetésre jutottunk, hogy a talaj növekvő koncentrációjú arzénterhelésének hatására valamennyi növényi szerv arzéntartalma nőtt. Az egyes növényi szervek arzén-akkumulációs képességének sorrendje a következő: gyökér > szár > levél > hüvely > szem. Habár valamennyi kezelésnél az arzén döntően a gyökérben akkumulálódott, a 270 mg kg−1-os kezelés esetén a gyökér már nem volt képes az arzén visszatartására, így a transzlokációja jelentősen fokozódott a talajfelszín feletti szervek irányába is.

A gyökérben akkumulálódott jelentős mennyiségű arzén a gyökér szárazanyag-produktumára nézve gátló hatást fejtett ki. A hüvely és szem esetén a legnagyobb (270 mg kg−1), míg a szár és levél esetén a legnagyobb kezelés mellett a 90 mg kg−1- os kezelés is szignifikánsan csökkentette az említett szervek szárazanyag-tartalmát. Ugyanakkor a 10 mg kg−1-os kezelés fokozta a levél és szár, míg a 3 és 10 mg kg−1- os kezelés növelte a generatív részek szárazanyag-tartalmát.

Az egyes szervek foszfortartalmának meghatározására irányuló vizsgálataink eredményei alapján megállapítható, hogy a szem, hüvely, levél, valamint szár esetén a 270 mg kg−1-os, míg a gyökérnél már a 90 mg kg−1-os kezelés hatására is nőtt, a kisebb koncentrációjú kezelések hatására azonban szignifikánsan nem változott az említett növényi szervek P-tartalma. A P-As arány tekintetében a kezelések hatására azonban drasztikus csökkenés volt megfigyelhető valamennyi növényi szerv esetén.

A talajvizsgálati eredmények alapján azt a konklúziót vontuk le, hogy a talaj „összes“ arzéntartalmának — a különböző adszorpciós folyamatoknak, illetve a talaj puffer kapacitásának köszönhetően — csak 38,6–56,9% van a növények számára is hozzáférhető formában jelen.

Restricted access