Search Results

You are looking at 1 - 10 of 374 items for :

  • Refine by Access: All Content x
Clear All

which does examine strategic choice of scientists at picking issues to publish and their collaboration structure interrelatedly. The proposed framework is demonstrated by an exemplary case, where management academia in Turkey from 1922 to 2008 is covered

Restricted access

diffused, and vice versa? ‐ What knowledge diffusion mechanism(s) does co-authorship network of Turkish management academia exhibit? Conceptual framework of this article develops a knowledge diffusion perspective which primes the nature of knowledge

Restricted access

accelerate the knowledge transfer between the academia and industry [ 11 ]. The community created in the cross-section of microfluidics, life sciences, analytics, and bioprocess engineering focuses on enzymatic microreactors, cells within microdevices, and

Open access

Abstract

In the American academic tradition, the freak show as a research topic appeared in the late 1970s, focusing on othered bodies and popular culture, considered revolutionary at the time. This article looks at the history of the discourses staged otherness provoked in the American context. While it was launched together with other discussions of othering – such as ‘the ethnic other’, which eventually led to the field of postcolonial studies – otherness based on physical difference led to discussions that established a perception of the freak show as an American phenomenon. Scholars like Leslie Fiedler used the othered body to cope with personal crisis, while Edward Said criticized Western European and American forms of colonial thinking. However, physical otherness seduced academics to argue along the dichotomies of self and other to eventually position the self. This article looks at this development historically, involving psychoanalysis, postcolonial studies, literary criticism, and popular culture, to question the American element of the freak show and encourage a rewriting of its cultural significance.

Restricted access

A successful coupling of architectural design with multi-aspect building performance assessment is a complex, but necessary requirement for today’s building planning- and retrofit-activities. Architects are required to not only possess the vocabulary and basic knowledge in multiple fields, but must also work in collaborative design teams, composed of different domain specialists (e.g., structural engineers and building simulation experts). However, training in collaborative work is rarely provided in academic surroundings. In this contribution, we describe an educational effort toward interdisciplinary work on a specific and clearly defined architectural design task, which strongly necessitates the consideration of performance mandates. The task is the retrofit and redesign of an existing building façade from the 1950s. “Rationalist” buildings of this period often display reasonable functional solutions and good daylight availability, but they have performance shortcomings in other areas. These encompass, for instance, poor thermal performance of the envelope, lack of sufficient indoor environmental control, and unsatisfactory overall appearance. In a combined design studio and project course for building performance modelling, students from different disciplinary backgrounds formed interdisciplinary design teams. These teams worked together on façade retrofit ideas for the aforementioned building, considering both aesthetic aspects and performance issues from the very first design sketch. This led to the development and performance evaluation of a number of original façade retrofit ideas. In addition, the students were asked to devise the building process management. They thus had to consider not only design issues, but practical matters of building construction. The present contribution illustrates the scope, the applied approaches, and the concrete results of this interdisciplinary academic effort.

Open access

Az akadémiai-ipari együttműködések szerepe a gyógyszerfejlesztésben pandémia idején

Drug development collaborations between Academia and Industry in Pandemia

Scientia et Securitas
Author: György Miklós Keserű

Összefoglaló. Egészen az ezredfordulóig a gyógyszeripari kutatás-fejlesztés világszerte hagyományosan nagyvállalati keretek között folyt. Az elmúlt évtizedekben azonban ebben a szegmensben jelentős átrendeződések tapasztalhatók, ugyanis a korai kutatási és fejlesztési projektek sok esetben már az egyetemi-akadémiai, illetve kkv-szektorból indulnak. A szervezeti keretek mellett a fejlesztések szakmai tartalma is változott, a hagyományos kismolekulás gyógyszerek mellett egyre meghatározóbb szerep jut a biológiai terápiáknak, valamint a hatóanyagok fejlesztése mára összekapcsolódott a releváns diagnosztikumok fejlesztésével. A projektek finanszírozásában is fontos változások történtek, egyre jelentősebb szerep jut az állami KFI finanszírozásnak és a (kockázati) tőkebefektetéseknek. A gyógyszeripari K+F szakmai, szervezeti és finanszírozási kereteinek változása jelentősen felértékelte és szélesítette a korábban is meglévő akadémiai-ipari kapcsolatokat. Az együttműködések fontos szerepet játszanak a COVID–19 járványra adott válaszokban is, amit a magyar egyetemek, kutatóintézetek, kis- és középvállalatok, valamint gyógyszeripari nagyvállalatok részvételével indult kutatások igazolnak.

Summary. Until the turn of the millennium, pharmaceutical research and development worldwide had traditionally taken place in pharmaceutical companies. In recent decades, however, significant rearrangements have been witnessed, as early-stage research and development projects often start at the universities or the academic and SME sectors. In addition to the organizational framework, the professional content has also changed: in addition to traditional small molecule drugs, biological therapies are playing an increasingly important role, and the development of active ingredients is now linked to the development of relevant diagnostics. Important changes have also taken place in the financing of projects, with public RDI financing and (venture) capital investments playing an increasing role. Changes in the professional, organizational and funding frameworks for pharmaceutical R&D have significantly enhanced and broadened existing academic-industrial relations. Collaborations also play an important role in the responses to the COVID-19 epidemic, as evidenced by research involving Hungarian universities, research institutes, small and medium-sized enterprises, and large pharmaceutical companies. The first example is a collaboration of an academic research group and a spin-off company formed from this environment. Researchers of the Eötvös University (ELTE) and others working at the Research Centre for Natural Sciences (RCNS) applied phage display technology to discover new protease inhibitors. They established EvolVeritas Ltd, a spin-off company developing high affinity and high specificity inhibitors of the TMPRSS2 protease that is involved in the SARS-CoV-2 viral entry to host cells. In a parallel research program, the same consortium is working on new inhibitors of the MASP2 protease contributing to the coronavirus mediated activation of innate immunity, particularly the complement system. This latter approach would result in the effective control of microthrombosis events associated with serious COVID-19 infections. Both of the approaches are in the early preclinical phase and further investment would be needed to push these projects into clinical testing. The second example is a collaboration between an academic research group and an SME to reposition of azelastine, an approved antihistamine drug that was found to be effective in blocking SARS-CoV-2 mediated pathogenesis. After successful preclinical studies, the partners have now initiated clinical trials to demonstrate the efficacy of azelastine nasal drops in the prevention and treatment of COVID-19 infections. The third example is a collaboration of academic research groups, a SME and a pharmaceutical company. This consortium develops an antibody-like fusion protein therapeutics that can neutralize the SARS-CoV-2 virus. One component of the ACE2-Fc fusion protein is the relevant portion of angiotensin-converting enzyme 2 (ACE2) produced by recombinant technologies, which binds to the spike protein of the pathogen. The virus thus binds to the fusion protein instead of the ACE2 receptors in human cells. Another component is responsible for the long half-life of IgG, the so-called Fc region. The consortium confirmed that the ACE2-Fc fusion protein inhibits SARS-CoV-2 infection in cell culture, and prevents disease in experimental animals. Preclinical development and the preparation of the core documentation is ongoing, which will soon be submitted to the European Medicines Agency (EMA) to initiate clinical trials. The final example is a joint development project that involved a research group, an SME and two pharmaceutical companies. The objective of this program is process development and pharmaceutical formulation of favipiravir, a broad-spectrum antiviral with a treatment potential against COVID-19. The consortium completed the process development of the active pharmaceutical ingredient (API) and developed finished dosage formulations available for clinical testing. Clinical trials are ongoing that aim investigating safety and efficacy of favipiravir in COVID-19 infected patients. All of the examples described here demonstrate the power of collaborations that helped the participants to give diverse and effective responses to the unprecedented pandemic challenge of COVID-19. We believe that these experiences would encourage the members of the academic and industry community to formulate further collaborations to tackle the unmet medical need in our societies.

Open access

to provide quantitative evidence regarding publication and citing patterns within UK academia, we investigated: The types of output and means of dissemination used by researchers in different broad disciplines, and how this changed between 2003 and

Restricted access

Dash Dot), ( ICT Dash Dot Dot), ( NANO Dot) Academia Sinica has collaborated frequently with different types of foreign institutes in each research field. In biotech, some Taiwanese hospitals, such as

Restricted access

categories to obtain data that the Taiwan government can use to develop patent strategy and technology policy and to give research directions for institutes, industries and academia. The set of patents and their citations comprise a network of ideas and their

Restricted access