Search Results

You are looking at 1 - 10 of 41 items for :

  • "amphiploid" x
  • All content x
Clear All

Gill, R.S., Dhaliwal, H.S., Multani, D.S. 1988. Synthesis and evaluation of Triticum durum — T. monococcum amphiploids. Theor. Appl. Genet. 75 :912–916. Multani D

Restricted access

Benavente, E., Alix, K., Dusautoir, J. C., Orellana, J., David, J. L. (2001): Early evolution of the chromosomal structure of Triticum turgidum - Aegilops ovata amphiploids carrying and lacking the Ph1 gene. Theor. Appl. Genet. , 103

Restricted access

evaluation of Triticum durum — T. monococcum amphiploids. Theor. Appl. Genet. , 75 , 912–916. Multani D. S. Synthesis and evaluation of Triticum durum — T. monococcum amphiploids

Restricted access

, S. V., Kawahara, T. (2007): Wheat artificial amphiploids involving the Triticum timopheevii genome: their studies, preservation and reproduction. Genet. Resour. Crop Evol. , 54 , 1507–1516. Kawahara T

Restricted access

Bao, Y.G., Li, X.F., Liu, S.B., Cui, F., Wang, H.G. 2009. Molecular cytogenetic characterization of a new wheat-thinopyrum intermedium partial amphiploid resistant to powdery mildew and stripe rust. Cytogenet

Restricted access

Four amphiploid lines (SHW) based on T. monococcum (Tm) and T. boeoticum (Tb) were crossed to T. durum varieties to generate 13 combinations. Field germination and winter survival of hybrid plants in F2 were assessed. Among all crosses, those with SHW8A-Tb and SHW9A-Tm showed highest field germination but with different degrees of spike fragility. The variation on seed number and weight per main spike was studied in F4–6 from SHW8ATb/ Progres and SHW5A-Tb/Severina crosses after individual selection for these traits. Ten lines with durum phenotype from the former and three genotypes with dicoccum plant shape from the latter cross were developed. SDS-PAGE indicated the presence of HMW-GS 1Ax2*+1Aynull subunits in four lines, among which 1Ax2* was inherited from T. boeoticum acc.110 through SHW8A-Tb. Most of the selected genotypes possessed γ-gliadin45, which was relating to good end-use quality. Powdery mildew testing showed that all progenies resulted from the SHW8A-Tb/Progres were susceptible to 12 races of the pathogen, while three lines derived from the SHW5A-Tb/Severina cross behaved differently: G32 expressed resistance to six, G33 to 2, and G34 to 5 races. The selected genotypes from crosses involving SHW with T. boeoticum exhibited good breeding performance compared to tetraploid wheat parents, and might be of breeding interest to further research.

Restricted access

cytogenetic characterization of two high protein wheat- Thinopyrum intermedium partial amphiploids. J. Appl. Genetics 52 :269–277. Molnár-Láng M. Molecular cytogenetic characterization of

Restricted access

– 1023 . Goncharov , N.P. , Bannikova , S.V. , Kawahara , T. 2007 . Wheat artificial amphiploids involving the Triticum timopheevii genome: their studies, preservation

Restricted access

Triticum urartu has been identified as donor of A genome in the polyploid wheats. An amphiploid derived from the cross between one accession of T. urartu , carrying 1Ax + Ay high-molecular-weight glutenin subunits, and durum wheat cv. Yavaros has been synthesised and used as a bridge species to transfer genetic material from the wild to the cultivated wheat. Some quality traits were evaluated in twenty durum lines derived from this amphiploid after backcrossing to durum. All lines were selected for the presence of 1Ax + Ay but maintaining two different patterns for the low-molecular-weight glutenin subunits and grain colour. The lines with red grain showed higher pigment content than those with yellow grain. In addition, the former lines present higher gluten strength than the latter ones.

Restricted access

New wheat × barley, wheat × Aegilops biuncialis and wheat × rye hybrids were produced with the aim of alien gene transfer from these species into wheat. Amphiploids were produced with the help of colchicine treatment from the last two combinations. The new wheat × barley hybrids were multiplied in tissue culture because of the high degree of sterility and then pollinated with wheat to obtain backcross progenies. Wheat-barley chromosome pairing was detected using genomic in situ hybridization (GISH) in two combinations (Mv9 kr1 × Igri, Asakazekomugi × Manas). In vitro conditions caused an increase in chromosome arm association frequency in both combinations and in fertility in some regenerants. Five wheat-barley translocations were produced in a wheat background and characterized through the combination of cytogenetic and molecular genetic approaches (GISH, FISH and SSR markers). The following translocations were identified: 2DS.2DL-1HS, 3HS.3BL, 6BS.6BL-4HL, 4D-5HS and 7DL.7DS-5HS. Physical mapping of the SSR markers on chromosomes 1H and 5H was carried out using the intragenomic and interspecific translocation breakpoints and the centromere as physical landmarks.  Disomic wheat-Aegilops biuncialis additions were produced after backcrossing the wheat-Ae. biuncialis amphiploids. Fluorescence in situ hybridization (FISH) was carried out using two repetitive DNA clones (pSc119.2 and pAs1) on Ae. biuncialis and its two diploid progenitor species to detect chromosome polymorphism. The 7M and 3M disomic chromosome additions were selected and five more lines still need to be characterized.  The octoploid triticale (Mv9 kr1 × Lovászpatonai) produced in Martonvásár was crossed with a 1RS.1BL wheat cultivar Matador. GISH analysis detected pairing between the 1RS arm of the translocation chromosome and that of Lovászpatonai rye in 32 % of the pollen mother cells, making it possible to select recombinants from this combination. The new recombinants between the 1RS of Petkus and the 1RS of Lovászpatonai rye cultivars are being analysed with the help of microsatellite markers.

Restricted access