Search Results

You are looking at 1 - 1 of 1 items for :

  • "battery cage" x
Clear All

The effect of free-range versus cage management system on corticosterone transfer into the eggs was studied in laying hens. Hungarian Yellow laying hens (age: 21 weeks, body weight: 2.0 ± 0.5 kg) were divided into two groups in the spring: Group I, free-range keeping (n = 15 layers, density: ≯ 0.5 bird/m2) in outdoor runs, with continuous access to a commercial layer feed; Group II, hens kept in battery cages (n = 17 layers, density: 2 birds/m2, natural light, continuous access to feed and water). Eggs were collected after a one-week adaptation period on days 2, 7 and 16. Corticosterone (CST) was extracted from homogenised egg samples using an ASE-200 Accelerated Solvent Extractor and then assayed by liquid chromatography linked with tandem mass spectrometry (LC-MS/MS) [Thermo Quest Surveyor high-performance liquid chromatography (HPLC) interfaced via Atmospheric Pressure Chemical Ionisation (APCI) ion source to Finnigan/Thermo Quest LCQ Deca MS/MS] using dexamethasone as internal standard with positive APCI ionisation. CST concentrations of whole eggs laid by free-range hens on days 2, 7 and 16 were 0.370 ± 0.218, 0.259 ± 0.066 and 0.915 ± 0.745 ng·g-1, respectively, while those of eggs laid by caged hens were 0.206 ± 0.157, 0.223 ± 0.165 and 0.184 ± 0.110 ng·g-1 at the above sampling times. It is concluded that in free-range laying hens the sharp changes of environmental weather conditions significantly increased the corticosterone content of eggs, while the environmentally controlled and closed battery cage management technology resulted in relatively uniform corticosterone concentrations in the whole eggs.

Restricted access