Search Results

You are looking at 1 - 10 of 16 items for :

  • "binuclear complex" x
  • All content x
Clear All
Journal of Thermal Analysis and Calorimetry
Authors: Viorel Sasca, Elena Mosoarca, Livia Avram, Ramona Tudose, and Otilia Costisor

Abstract  

The thermal decomposition of Mannich base N,N′-tetra(4-antipyrylmethyl)-1,2-diaminoethane (TAMEN), and its Ni(II), binuclear complex, Ni2(TAMEN)Cl4, in air and in nitrogen atmosphere, were investigated. X-ray powder diffractometry, infrared spectroscopy and simultaneous thermogravimetry-differential thermal analysis (TG-DTA), have been used to characterize and to study the thermal behavior of these compounds. The results provided information concerning the stoichiometry, crystallinity, thermal stability and decomposition mechanism of the compound.

Restricted access

Mass spectral and thermal studies by TG and DTG of some iron(III) binuclear complexes of the general type Fe2(R2dtc)2(tds∮)X2X/′ have been carried out to determine their modes of decomposition. Fragmentation patterns are given and possible mechanisms are discussed.

Restricted access

Abstract  

Two new solid binuclear complexes of the compositions [(UO2)2(HL)3]NO3, and [Th2(HL)3(NO3)2](NO3)3 (H2L=o-vanillylidene anthranilic acid) have been synthesized and characterized by elemental analyses, DTA-TG, IR spectra, UV spectra and molar conductance. Possible structures of the two complexes have been proposed.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Elena Mosoarca, Sasca Viorel, Livia Avram, Ramona Tudose, and Otilia Costisor

Abstract  

The thermal decomposition in air and in nitrogen atmosphere of binuclear complex compounds of Cu(II) and Co(II) containing the Mannich base N,N′-tetra(4-antipyrylmethyl)-1,2 diaminoethane (TAMEN) as a ligand, Cu2(TAMEN)Cl4 and Co2(TAMEN)Cl4, were investigated. X-ray powder diffractometry, infrared spectroscopy and simultaneous thermogravimetry-differential thermal analysis (TG-DTA), have been used to characterize and to study the thermal behavior of these compounds. The results provided information concerning the stoichiometry, crystallinity, thermal stability and decomposition mechanism of the compounds.

Restricted access

Abstract  

Electronic interaction between two iron atoms was studied in the ferrocene-arene binuclear complexes ([Fc(CH2)nPhFeCp]+PF6 -) by using 57Fe Mössbauer spectroscopy and cyclic voltammetry(CV). By comparing the CV data between Fc(CH2)nPh and its arene complexes it was revealed that the considerable electronic interaction between two iron atoms exists in the n = 0 complex and a slight interaction in the n = 1 complex, while no significant interaction exists in n = 2, 3, 4, and 6 complexes. These results were discussed by using MO calculations.

Restricted access

Abstract  

Solubility and pH precipitation studies were carried out to obtain the binuclear complex {[TiO(C9H6NO)2][Sn(C9H6NO)2]} involving 8-hydroxyquinoline as chelating agent. The compound, the individual mononuclear complexes and their physical mixture were evaluated by means of techniques such as TG, DTA, elemental analysis, X-ray diffraction, IR spectroscopy. The properties of the original compounds and also the thermoanalytical conditions exerted a great influence on the degree of crystallinity and on the crystalline phase of the mixed oxide obtained as final product of the thermal decomposition.

Restricted access

Abstract  

A ternary binuclear complex of dysprosium chloride hexahydrate with m-nitrobenzoic acid and 1,10-phenanthroline, [Dy(m-NBA)3phen]2·4H2O (m-NBA: m-nitrobenzoate; phen: 1,10-phenanthroline) was synthesized. The dissolution enthalpies of [2phen·H2O(s)], [6m-HNBA(s)], [2DyCl3·6H2O(s)], and [Dy(m-NBA)3phen]2·4H2O(s) in the calorimetric solvent (VDMSO:VMeOH = 3:2) were determined by the solution–reaction isoperibol calorimeter at 298.15 K to be

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta_{\text{s}} H_{\text{m}}^{\theta }$$ \end{document}
[2phen·H2O(s), 298.15 K] = 21.7367 ± 0.3150 kJ·mol−1,
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta_{\text{s}} H_{\text{m}}^{\theta }$$ \end{document}
[6m-HNBA(s), 298.15 K] = 15.3635 ± 0.2235 kJ·mol−1,
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta_{\text{s}} H_{\text{m}}^{\theta }$$ \end{document}
[2DyCl3·6H2O(s), 298.15 K] = −203.5331 ± 0.2200 kJ·mol−1, and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta_{\text{s}} H_{\text{m}}^{\theta }$$ \end{document}
[[Dy(m-NBA)3phen]2·4H2O(s), 298.15 K] = 53.5965 ± 0.2367 kJ·mol−1, respectively. The enthalpy change of the reaction was determined to be
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta_{\text{r}} H_{\text{m}}^{\theta } = 3 6 9. 4 9 \pm 0. 5 6 \;{\text{kJ}}\cdot {\text{mol}}^{ - 1} .$$ \end{document}
According to the above results and the relevant data in the literature, through Hess’ law, the standard molar enthalpy of formation of [Dy(m-NBA)3phen]2·4H2O(s) was estimated to be
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta_{\text{f}} H_{\text{m}}^{\theta }$$ \end{document}
[[Dy(m-NBA)3phen]2·4H2O(s), 298.15 K] = −5525 ± 6 kJ·mol−1.

Restricted access

formation of 1:1 and 2:1(M:L) complexes. The results of the elemental analysis ( Table 1 ) indicated the formation of binuclear complexes. The complexes in DMF solutions were found to be nonelectrolyte [ 39 ]. This indicates the coordination nature of the

Restricted access

significantly more than those of the heats of reactions ( 5 ) and ( 6 ). This can be explained by binuclear complex formation ( 7 ) only (Scheme 1 ). (7) Scheme 1 The addition of hexamethylenediamine to the cadmium

Restricted access