Search Results

You are looking at 1 - 10 of 102 items for :

  • "biodiesel" x
  • All content x
Clear All
Journal of Thermal Analysis and Calorimetry
Authors: Marta Conceição, V. Fernandes Jr, A. Bezerra, M. Silva, Iêda Santos, F. Silva, and A. Souza

Abstract  

Diesel oil has an important role in the field of urban traffic as well as in the transportation of products. However, the amount of the non-renewable sources is continuously decreasing. This fact and the environmental requirements brought the necessity to search for other, renewable sources. This paper aimed the dynamic kinetic calculation of thermal decomposition of castor oil, methanol biodiesel and ethanol biodiesel using Coats–Redfern, Madhusudanan and Ozawa methods. On the base of the thermogravimetric curves the following thermal stability order could be established: castor oil>ethanol biodiesel>methanol biodiesel. Kinetic data presented coherent results. Methanol biodiesel presented lower activation energy than ethanol biodiesel, suggesting that methanol biodiesel has a better quality for combustion.

Restricted access

Sunflower biodiesel

Use of P-DSC in the evaluation of antioxidant efficiency

Journal of Thermal Analysis and Calorimetry
Authors: M. L. A. Tavares, N. Queiroz, I. M. G. Santos, A. L. Souza, E. H. S. Cavalcanti, A. K. D. Barros, R. Rosenhaim, L. E. B. Soledade, and A. G. Souza

increase of global temperature. Biofuels have been pointed out as one of the ecological alternatives to petroleum, in order to reduce, at the short period, the CO 2 emissions in the atmosphere, thus contributing to reduce the greenhouse effect. Biodiesel

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: A. Souza, H. Danta, M. Silva, I. Santos, V. Fernandes, F. Sinfrônio, L. Teixeira, and Cs. Novák

Abstract  

The biodiesel obtained by transesterification by reaction between ester and an alcohol in the presence of catalyst. The purpose of this work is to evaluate the thermal and kinetic behavior of the methanol biodiesel derived from cotton oil. The quality analysis was done by gas chromatography and proton nuclear magnetic resonance spectrometry (1H NMR) in order to examine if the product meets with the requirements of the European Standard EN 1403. The thermogravimetric profile of the cotton biodiesel indicated that the decomposition steps are associated to the volatilization and/or decomposition of the methyl esters. Kinetic data was also obtained by thermal analysis.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: R. Candeia, J. Freitas, M. Souza, Marta Conceição, Iêda Santos, L. Soledade, and A. Souza

Abstract  

The most feasible alternative among fuels derived from biomass seems to be the biodiesel, having the required characteristics for a total or partial substitution of diesel oil. Therefore, the aim of this work is to evaluate the thermal and rheological behavior of the blends of diesel with the methanol biodiesel obtained from soybean oil, using B5, B15 and B25 blends. All thermogravimetric curves exhibited one overlapping mass loss step in the 35–280C temperature range at air atmosphere and one step between 37–265C in nitrogen. The rheological study showed a Newtonian behavior (n=1) for all blends.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Nataly Santos, Marileide Tavares, R. Rosenhaim, F. Silva, V. Fernandes Jr, Iêda Santos, and A. Souza

Abstract  

The growing petroleum deficit requires the development of alternative fuel sources. Biodiesel is a good alternative, as it is a biodegradable and renewable product, which obeys the carbon cycle. In this work, the biodiesel from babassu was synthesized using the methanol route, and characterized by physico-chemical analyses in order to make able the investigated biodiesel to fulfill with its properties the requirements of Brazilian National Agency for Petroleum, Natural Gas and Biofuel (ANP). Besides gas chromatography, IR spectroscopy experiments and thermoanalytical measurements in air and in nitrogen were done to determine the main thermal decomposition processes and calorimetric events. The evaporation temperature of babassu biodiesel was similar in both atmospheres, started around 52 in air and around 60C in nitrogen.

Restricted access

Abstract  

Biodiesel is a non-toxic biodegradable fuel that consists of alkyl esters produced from renewable sources, vegetal oils and animal fats, and low molecular mass alcohols, and it is a potential substitute for petroleum-derived diesel. Depending on the raw materials used, the amount of unsaturated fatty acids can vary in the biodiesel composition. Those substances are widely susceptible to oxidation processes, yielding polymeric compounds, which are harmful to the engines. Based on such difficulty, this work aims to evaluate the antioxidant activity of cashew nut shell liquid (cardanol), as additive for cotton biodiesel. The oxidative stability was investigated by the pressure differential scanning calorimetry (PDSC) and UV/Vis spectrophotometer techniques. The evaluated samples were: as-synthesized biodiesel — Bio T0, additivated and heated biodiesel — Bio A (800 ppm L−1 of hydrogenated cardanol, 150°C for 1 h), and a heated biodiesel — Bio B (150°C, 1 h). The oxidative induction time (OIT) analyses were carried out employing the constant volume operation mode (203 psi oxygen) at isothermal temperatures of 80, 85, 90, 100°C. The high pressure OIT (HPOIT) were: 7.6, 15.7, 22.7, 64.6, 124.0 min for Bio T0; 41.5, 77.0, 98.6, 106.6, 171.9 min for Bio A and 1.7, 8.2, 14.8, 28.3, 56.3 min for Bio B. The activation energy (E) values for oxidative processes were 150.0±1.6 (Bio T0), 583.8±1.5 (Bio A) and 140.6±0.1 kJ mol−1(Bio B). For all samples, the intensities of the band around 230 nm were proportional to the inverse of E, indicating small formation of hyper conjugated compounds. As observed, cardanol has improved approximately four times the cotton biodiesel oxidative stability, even after the heating process.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Houyin Zhao, Yan Cao, William Orndorff, Yu-Hsiang Cheng, and Wei-ping Pan

Introduction Biodiesel, synthesized from vegetable oil, is a realistic alternative for diesel fuel since it is not only biodegradable and non-toxic but also produces less particles, smoke, and carbon monoxide as compared with

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: E. F. S. M. Ramalho, I. M. G. Santos, A. S. Maia, A. L. Souza, and A. G. Souza

.5 millions of tons, approximately 500,000 tons of poultry fat are usually rejected [ 2 ]. The low commercial value of the poultry fat associated with physicochemical properties appropriated to biodiesel production make of this raw material an excellent option

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Rosiane M. C. Farias, Marta M. Conceição, Roberlúcia A. Candeia, Marta C. D. Silva, Valter J. Fernandes Jr., and Antonio G. Souza

Introduction In Brazil, the soy, cotton, and palm oils are used more for the obtainment of biodiesel, besides the bovine suet. It is viewed to search for alternatives to guarantee the quantity of raw material necessary to the

Restricted access

Biodiesels from beef tallow/soybean oil/babassu oil blends

Correlation between fluid dynamic properties and TMDSC data

Journal of Thermal Analysis and Calorimetry
Authors: G. A. A. Teixeira, A. S. Maia, I. M. G. Santos, A. L. Souza, A. G. Souza, and N. Queiroz

Introduction Biodiesel is mainly produced by the transesterification of vegetable oils and fats via alkaline catalysis, in which the triacylglycerides are converted into fatty acid esters by reaction with an alcohol, usually

Restricted access