Search Results

You are looking at 1 - 2 of 2 items for :

  • "breeding software" x
  • Refine by Access: All Content x
Clear All

Genebanks are storage facilities designed to maintain the plant genetic resources of crop varieties (and their wild relatives) and to ensure that they are made available and distributed for use by plant breeders, researchers and farmers. The Martonvásár Cereal Genebank (MV-CGB) collection evolved from the working collections of local breeders and consists predominantly of local and regional materials. Established in 1992 by the Agricultural Research Institute of the Hungarian Academy of Sciences (Bedő, 2009), MVCGB with its over 10,000 accessions of the major species (Triticum, Aegilops, Agropyron, Elymus, Thinopyrum, Pseudoroegneria, Secale, Hordeum, Avena, Zea mays), became one of the approx. 80 cereal germplasm collections that exist globally. In Martonvásár breeding is underway on a number of cereal species, and large numbers of genotypes are tested each year in the field and under laboratory conditions. The increasing size of the research programmes assisted by a modern genebank background involve an enormous increase in the quantity of data that must be handled during research activities such as traditional breeding, pre-breeding and organic breeding. A computerized system is of primary importance to synchronize breeding and genebank activities, to monitor the quality and quantity of seed accessions in cold storage, to assist the registration of samples, and to facilitate characterization, regeneration and germplasm distribution.

Restricted access
Acta Agronomica Hungarica
C. Kuti
L. Láng
G. Gulyás
I. Karsai
K. Mészáros
G. Vida
, and
Z. Bedő

In recent years an information system has been elaborated and constantly improved in Martonvásár, making it possible to handle the 3–4 million identification, observation, measurement, pedigree and other data generated for a total of almost 100,000 experimental plots each year. The extremely rapid development of biotechnology has made breeders interested in integrating molecular breeding methods into the conventional phenotype-pedigree system. The aim is to improve the competitiveness of breeding programmes through the intensive use of this new technology, with particular emphasis on determining how marker-assisted selection can be utilised. The present paper outlines not only a new data structure introduced to accommodate the new data elements of data categories such as gene sources, primer bank, primer combinations, markers, genes and alleles, but also data management tools and a standalone software interface to combine both molecular and phenotypic data. The integration of the molecular genomic data (GENETECH) with the information from the existing databases: pedigree (PEDIGREE), gene bank (GENEBANK) and germplasm exchange (GERMPEXCHG), ensures that biotechnological data generated at no little cost can be harnessed in ways that are important for breeders in decision-making. This is achieved through: (i) identification and centralization in uniform sources of the molecular data, and their matching with specific phenotypes, with special regard to those of importance for marker-assisted selection, (ii) integration and compliance with existing information system data, (iii) facilitation of decision-making based on the above (e.g. grouping of selection/crossing partners).

Restricted access