Search Results

You are looking at 1 - 10 of 325 items for :

  • "calcination" x
  • All content x
Clear All

Abstract  

The influence of calcination conditions on changes in phase composition and porous structure was studied for hydrous aluminium oxide, obtained by leaching out potassium salts from the products of roasting basic aluminium-potassium sulfate in hydrogen atmosphere at 600C. The product of calcination at 350C in vacuum has the most developed porous structure with most pores of internal radius within 10–60 . Calcination in air atmosphere at temperatures 700, 800, 900, or 1000C resulted in decrease of specific surface of aluminium oxide and increase of the share of pores with internal radius above 60 in the overall porosity of the samples. The reconstruction of the porous structure proceeds mainly as a result of coalescent sintering.

Restricted access

Abstract  

Differences in mass loss occurring in the course of dynamic and isothermal heating of SiO2-aerogel and changes of specific surface and hydrophylicity during calcination were studied by thermal analysis. SiO2-aerogel was prepared from tetramethoxysilane (TMOS) hydrolyzed by ammonia solution at 0C with molar ratio TMOS: H2O:NH4OH 4:1:0.01. Differences are caused mainly by oxidation of organic matter and by diffusion of products of the oxidation. Heat transfer has none or little effect on the differences. Samples calcined at temperatures about 300C reach maximum hydrophilicity though they still contain small amounts of residual organic matter.

Restricted access

The structural changes occurring during the dehydroxylation of kaolinite have been followed using flash calcination to produce kinetically frozen calcines. The percentage of dehydroxylation was varied by changing the furnace residence time or temperature and/or heating speed. These calcination conditions affected the reaction kinetics, but the products depended only on the extent of dehydroxylation.

Restricted access

Abstract  

The reactivity of MgO obtained from calcination of magnesium carbonate at different temperatures has been investigated by means of hydration in a constant relative humidity environment at 40°C for periods up to 24 days. Natural magnesite and AR grade basic MgCO3 calcined in the range of 500–1000°C was characterised in terms of surface area, crystallite size, morphology, and hydration rate. It was found that the hydration rate is dependent on the surface area and crystallite size where temperature was the main variable affecting them. The most reactive MgO was produced at the lowest calcination temperature with the highest surface area and the smallest crystallite size. The basic MgO specimens showed higher degree of hydration compared to the natural MgO specimens due to the smaller surface area and larger crystallite size. The low MgO content of the starting natural magnesite is also attributable to the lower reactivity. This preliminary study serves as a mean to investigate potential utilisation of reactive MgO as a supplementary cementitious material in eco-friendly cements.

Restricted access

Abstract  

The calcination of limestone is one of the oldest technical processes and it is still of actual interest. Very early calcitic mortars from Turkey have been investigated and compared with materials of other early civilisations i.e. with Egyptian mortars containing gypsum as well as medieval dolomite-based mortars from alpine regions. Contemporary calcination procedures, in particular the cement production, range among the most important global industrial processes causing non neglectable environmental problems. Sustainable, solar energy assisted calcination technologies and the conversion of product CO2 into useful commodities are discussed.

Restricted access

present study, the calcination of sulfur-rich calcareous oil shales from the Negev deposits of Israel is investigated. The Negev oil shales naturally contain a large amount of calcite, which may functioned as a sulfur-removing adsorbent. Therefore, the

Restricted access

Abstract  

Calcination conditions of the precursor powders, i.e. temperature, type of atmosphere and duration, were determined with a view to obtain superconducting powders with the most advantageous physico-chemical properties. Investigated were powders in the Y−Ba−Cu−O system prepared by the sol-gel method. Thermogravimetric examinations of the powders have revealed that the decomposition kinetics of BaCO3 determines the formation rate of the superconducting YBa2Cu3O7−x (‘123’) phase. It follows from the decomposition kinetics of BaCO3 that the process is the most intensive in argon, whereas in static air and oxygen it is the slowest. The phase composition analysis (XRD) and low-temperature magnetic susceptibility measurements of the calcinated powders, confirm the above mentioned changes in the decomposition kinetics. The reaction of barium carbonate can be completed if the calcination process is conducted at the temperature of 850°C for 25 h, yielding easily sinterable powders for obtaining single-phase superconducting bulk samples with advantageous functional parameters.

Restricted access

Summary  

The pozzolanic reactivity of thermally treated zeolites was studied on the basis of the Chapelle test combined with X-ray diffraction (XRD) and Fourier Transform (FTIR) spectroscopy, as well as thermogravimetric analysis (TG/DTG) and differential thermal analysis (DTA). The raw zeolite samples are from the Pentalofos area, Thrace, NE Greece. Their main mineral constituent is 'heulandite type-II', an intermediate type of the heulandite-clinoptilolite isomorphous series. Calcination of the samples was carried out up to 400, 500, 600, 700 and 1000C for 15 h. The changes were recorded using the above methods. The deformation of the zeolite crystal lattice starts at about 400C and proceeds as the temperature of thermal treatment rises. The thermal treatment of zeolite at 400C improves its pozzolanic reactivity and accelerates the reaction with Ca(OH)2.

Restricted access

Summary Magnesium oxide was produced through calcination of magnesite ore. A rehydration percentage of MgO to Mg(OH)2 of higher than 60% is obtained using calcination temperatures of 1000°C and below. At these temperatures medium reactive MgO was formed. The extend to which dead burnt MgO (obtained after calcination at 1200°C and higher) may be rehydrated is dependent on the calcination time, but even after 1 h and using magnesium acetate as a hydrating agent only 40% of the initial product has rehydrated to Mg(OH)2. After 4 and more hours of calcinations at 1200°C, a maximum of approximately 14% of the initial MgO is rehydrated back to Mg(OH)2. Thermogravimetric analysis was performed on the various compounds to determine the amounts of Mg(OH)2 that formed.

Restricted access

Abstract  

Calcination of sepiolite and of two sepiolite/CsCl mixtures, unground and air-ground was investigated by thermo-XRD-analysis. At 200 °C sepiolite, neat, mixed or air-ground with CsCl lost interparticle and zeolitic water. The framework of sepiolite persisted during the dehydration but became defected, mainly in the air-ground mixture, less in the unground mixture and little in the neat clay. At 500 °C, with the loss of bound water, the neat clay was folded and transformed into sepiolite anhydride. In sepiolite/CsCl mixtures the dehydrated variety persisted but the degree of crystal-imperfection increased in the air-ground mixture more than in the unground mixture. At 700 °C the neat clay remained crystallized, but the CsCl mixtures became amorphous. Some crystalline dehydrated sepiolite or sepiolite anhydride persisted in the unground and air-ground CsCl mixtures, respectively. At 850 °C, the neat clay crystallized into protoenstatite with some enstatite and clinoenstatite. The amorphous fraction of sepiolite in the unground sepiolite/CsCl mixtures crystallized into pollucite and forsterite and the crystalline fraction was transformed into enstatite, protoenstatite, and clinoenstatite. In the air-ground mixture, the amorphous phase was transformed into pollucite with some forsterite and the crystalline fraction into enstatite.

Restricted access