Search Results

You are looking at 1 - 2 of 2 items for :

  • "calibration free" x
  • Refine by Access: All Content x
Clear All

Abstract  

The reaction calorimeter CAP202 (chemical process analyzer) determines thermal effects by measuring the true heat flow (THF) based on unique design principles. In particular, measurements can be performed without requiring any calibration procedures and the obtained results are most reliable and exhibit extremely stable baselines. The benefits in respect of experimental speed, data quality and long term performance are obvious. Due its broad dynamic range the instrument can be employed for measurements ranging from small physical heat to energetic chemical reactions. The CPA allows running experiments seamlessly with reaction volumes between 10 and 180 mL. This volume flexibility simplifies the investigation of multi-step operations and is the basis for various applications employing precious or highly energetic compounds. Due to the fact that calibrations are not required, altering conditions during a single experiment like changes in viscosities, liquid levels or stirring speeds do not affect the results of the measurements.

Restricted access

Abstract  

When chemical reactions are performed in semi-batch mode and the reaction rate is relatively low, the reactant added may be accumulated. The resulting thermal accumulation is of major concern regarding process safety, as a fault in the cooling system may lead to a run-away reaction. The feed rate in semi-batch processes is usually constant, but this paper discusses methods of optimizing the feed rate interactively, based on the measured heat flow and the calculated amount of compound that has actually reacted. The prerequisite of such procedures is to run the experiments in a reaction calorimeter in which the heat flows can be measured accurately and continuously. For this purpose a ChemiSens reaction calorimeter CPA202, which is calibration free and gives stable, flat ‘zero-line-type’ baselines, was employed.

Restricted access