Search Results

You are looking at 1 - 2 of 2 items for :

  • Refine by Access: All Content x
Clear All
Nanopages
Authors:
A. Szabo
,
A. Fonseca
,
L. P. Biro
,
Z. Konya
,
I. Kiricsi
,
A. Volodin
,
C. Van Hasendonck
, and
J. B.Nagy

Some recent results on the synthesis of coiled carbon nanotubes (CNTs) are summarized. Several supported catalysts can lead to the formation of coiled CNTs. Interestingly, certain domains of the coil pitch and coil diameter are favoured, and two “stability islands”are found in the 3D representation of the number of coiled CNTs as a function of both coil pitch and coil diameter. It is emphasized that these nanotubes are formed either by introducing pairs of five-membered ring - seven-membered ring or by forming haeckelite structures. The coiled CNTs could be used in nanocomposite reinforcement as well as special sensors based on their remarkable mechanical and electrical properties.

Open access

Multiwall carbon nanotubes were synthesized either on the outer surface of iron containing mesoporous silicates using catalytic chemical vapor deposition (CCVD) or in the pore system of morphologically different mesoporous materials (hexagonal or spherical shapes) with graphitization of the template molecules. Transmission electron microscopy (TEM) study shows that the CCVD method resulted in long, bent and well graphitized carbon nanotubes on impregnated samples irrespective to the morphology of the silicate. Isomorphously substituted spherical MCM-41 with low Si/Fe ratio was found to be active catalysts for carbon nanotube production in CCVD as well. Synthesis of MWNTs with graphitization of template molecules in the pores of MCM-41 was successful in hexagonal MCM-41 samples irrespective that they contain or not iron in the silicate framework. Carbon nanotube formation was not observed in spherical derivatives of these samples during the graphitization process.

Restricted access