Search Results

You are looking at 1 - 10 of 498 items for :

  • All content x
Clear All

treatment depends on the type of soil. For sandy soil, cement is used to improve the foundation characteristics. The improvement can be classified into many types depending on the process involved like material selection, ground condition, structure type

Restricted access

Abstract  

Thermokinetic analysis of cements hydration under nonisothermal conditions was performed. The influence of the application moment, intensity and duration of heat effect on the velocity and completeness of the character of hydration was estimated.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Barbara Pacewska, I. Wilińska, and G. Blonkowski

Abstract  

The paper describes an attempt of chemical activation of fly ash and claims the usefulness of combination of such investigation methods as calorimetry and infrared absorption for investigations of early periods of cement hydration. The research samples were cement pastes made with an addition of fly ash and admixtures of chemical activators, CaCl2, Na2SO4 and NaOH, whereas a cement paste without fly ash addition and a cement-fly ash paste (both without admixtures) were used as reference samples. In order to investigate early periods of cement pastes hydration, the amount and rate of heat release were registered, and IR spectrums were checked at appointed hydration moments. As a result, it was shown that the combination of calorimetric and IR absorption methods in the investigations of early periods of cement hydration was useful. It was confirmed that the use of chemical activators CaCl2, Na2SO4 and NaOH accelerated the hydration of cement pastes containing fly ash additive in early hours after adding water. The action of activators on hydrating cement system is different for each of investigated compounds.

Restricted access

Abstract  

The effect of PbO on cement hydration kinetics by calorimetric method was evaluated as a first step in this project. Substantial retardation of reaction with water at early stages with subsequent intensification of the process was found. As the next step, the model systems covering pure cement minerals and their mixtures of various composition as well as soluble Pb salts were taken into account to elucidate the mechanism of delayed, by quite good formation of products in the so-called post-induction period. The precipitation of sulphate, forming very thin impermeable layer seems to be responsible for this delaying effect in case of cement, however the other reactions of Pb compounds in alkaline environment of hydrating calcium silicate are not out of importance. In order to prove this, the studies of chemical composition in small areas were also carried out.

Restricted access

Abstract  

The stability of supersulphated cement (SSC) is investigated. The hydration products of cement pastes prepared at a water cement ratio of 0.27 were determined by thermogravimetry (TG) and X-ray diffraction (XRD). Ettringite, one of the initial hydration products, is shown to be stable under conditions of storage at 25, 50 and 75°C and when subject to relative humidities of 100, 53 and 11% of water vapour in each case. The effect of drying on ettringite stability at the higher temperatures is discussed in relation to the relative humidity.

Restricted access

Abstract  

The stability of Supersulphated Cement (SSC) is investigated at 95°C when subjected to relative humidities of 100, 53 and 11% of water vapour. Previously [1] investigations at 25, 50, 75°C under the same conditions of humidity reported the stability of ettringite, one of the initial hydration products. At 95°C, decomposition of ettringite, is found at all humidities and is rapid at 100% relative humidity. The hydration products of cement pastes at a water cement ratio of 0.27 were determined by thermogravimetry (TG) and X-ray diffraction (XRD). The formation of the hydragarnet, plazolite is recorded during the decomposition/dehydration process enhanced by possible carbonation. Rehydration studies on the products after storage for up to 9 months were carried out using distilled water and the samples tested for ettringite content. It is concluded that ettringite in SSC is inherently unstable at 95°C.

Restricted access

Abstract  

Sulphate resistance and passivation ability of the mortars made from pozzolan cement of CEM IV/A (P) type according to European Standard EN 197-1 (zeolite blended cement with 60.82 mass% of PC clinker, 35.09 mass% of zeolite and 4.09 mass% of gypsum abbreviated as ZBC) and ordinary Portland cement (abbreviated as PC) are introduced. Resistance tests were performed in water and 5% sodium sulphate solution (both 20°C) for 720 days. The increased sulphate resistance of pozzolan cement relative to that of PC was found. The key quantitative insight into the hydrate phase behaviour is given by thermal analysis. This is due to pozzolanic reaction of zeolite with PC resulting in reduction of the formed Ca(OH)2 opposite to the reference PC. Ability of pozzolan cements with 15 to 50 mass% of zeolite to protect steel against corrosion was verified in 20°C/85% RH-wet air within 180-day cure. Steel was not corroded in the mortars made with pozzolan cement containing up to 35 mass% of zeolite. Pozzolan cement of CEM IV/A (P) type containing 35 mass% of zeolite is a suitable cementitious material for concrete structures exposed to sulphate attack. Steel is protected against corrosion by this pozzolan cement in the same measure as the reference PC.

Restricted access

Abstract  

When cement hydrated compositions are analyzed by usual initial mass basis TG curves to calculate mass losses, the higher is the amount of additive added or is the combined water content, the higher is the cement ‘dilution’ in the initial mass of the sample. In such cases, smaller mass changes in the different mass loss steps are obtained, due to the actual smaller content of cement in the initial mass compositions. To have a same mass basis of comparison, and to avoid erroneous results of initial components content there from, thermal analysis data and curves have to be transformed on cement calcined basis, i.e. on the basis of cement oxides mass present in the calcined samples or on the sample cement initial mass basis. The paper shows and discusses the fundamentals of these bases of calculation, with examples on free and combined water analysis, on calcium sulfate hydration during false cement set and on quantitative evaluation and comparison of pozzolanic materials activity.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Caroline A. Pinto, J. Dweck, J. J. Sansalone, F. K. Cartledge, M. E. Tittlebaum, and P. M. Büchler

Summary This paper presents a study of a cement-based solidification/stabilization process of storm water runoff solid residuals by non-conventional differential thermal analysis (NCDTA). The study was used to investigate the early hydration stages of a type I Portland cement containing the raw residual, two fractions of the residuals (coarse and fine), and two additives (quicklime and sodium bentonite). During these stages the fine fraction of the residuals retards the hydration reactions more than the coarse one, and both fractions have components that are reactive during the hydration process. When sodium bentonite is present in the pastes, the higher the initial cement content of the pastes, the lesser is the reactivity of the residuals. The presence of quicklime, which undergoes simultaneous highly exothermal hydration, accelerates the cement hydration reactions as well as those due to the presence of the residual solids. In these quicklime-containing compositions, the effect of sodium bentonite is similar to that when no quicklime is added, except when the whole residuals are used.

Restricted access

Abstract  

In the present work, a Portland cement blended with calcium carbonate is being used to study the solidification/stabilization (S/S) of a Brazilian tanning waste arising from leather production. Chromium is the element of greatest concern in this waste, but the waste also contains a residual organic material. Using thermogravimetry (TG) and derivative thermogravimetry (DTG) to identify and quantify the main hydrated phases present in the pastes, this paper presents a comparative study between the effects of Wyoming and Organophilic bentonites (B and OB) on cement hydration. Samples containing combinations of cement, B, OB and waste have been subjected to thermal analysis after different setting times during the first 28 days of the waste S/S process. Both bentonites affect the cement hydration, with no significant differences in hydration degree after 1 week. This work shows further examples of the great utility of thermal analysis techniques in the study of very complex systems containing both crystalline and amorphous mineral materials as well as organics.

Restricted access