Search Results

You are looking at 1 - 10 of 17 items for :

  • "complexes of rare earths" x
  • Refine by Access: All Content x
Clear All

Abstract  

The complexes of rare earth bromides with alanine, REBr33AlanH2O (RE=Ce, Pr, Sm, Eu, Gd and Tb, n=3; RE=Dy and Y, n=2.5 Ala=alanine), were prepared and characterized by means of chemical analysis, elemental analysis, molar conductivity, thermogravimetry, IR spectra and X-ray diffraction. The thermal decomposition in N2 of these complexes was studied by means of TG-DTG techniques from ambient temperature to 1000C. During heating, the hydrated complexes of Ce, Pr and Y lose waters in one step, but the hydrated complexes of Sm, Eu, Gd, Tb and Dy lose waters in two steps. Then anhydrous complexes lose 2.5 alanine molecules except the complexes of Eu which lose three alanine molecules. Apparently, only be complex of Eu has an intermediate, EuOBr. All complexes finally decompose to oxides.

Restricted access

Thermal dissociation reactions and mechanism of complexes of rare earth(iii) nitrates with the crown ether benzo-15-crown-5 were investigated by means of TG-DTG, DSC, DTA and IR technique. The results have shown that the dissociation processes of the complexes consist of several steps, one of which is a fast decomposition reaction. The fast decomposition peak temperatures (DSC) of all the complexes of the lanthanides (except Pm and Tm) decrease regularly with increasing atomic number. Moreover, values of the enthalpy change of desolvation, fast and the fourth step of decomposition and the apparent activation energies of fast and the fourth step of decomposition were obtained.

Restricted access

Abstract  

Rare earth element 3-methyladipates were prepared as crystalline solids with general formula Ln2(C7H10O4)3nH2O, where n=6 for La, n=4 for Ce,Sm–Lu, n=5 for Pr, Nd and n=5.5 for Y. Their solubilities in water at 293 K were determined (2⋅10–3–1.5⋅10–4 mol dm–3). The IR spectra of the prepared complexes suggest that the carboxylate groups are bidentate chelating. During heating the hydrated 3-methyladipates lose all crystallization water molecules in one (Ce–Lu) or two steps (Y) (except of La(III) complex which undergoes tomonohydrate) and then decompose directly to oxides (Y, Ce) or with intermediate formation of oxocarbonates Ln2O2CO3 (Pr–Tb) or Ln2O(CO3)2 (Gd–Lu). Only La(III) complex decomposes in four steps forming additionally unstable La2(C7H10O4)(CO3)2.

Restricted access

Abstract  

Stability constants for the lanthanide elements complexes with tetracycline were determined by the methods of average number of ligands, the two parameters and by weighted least squares. The technique of solvent extraction was applied to obtain the values of the parameters required for the determination of the constants.

Restricted access

Abstract  

The complexes of yttrium and lanthanide with 1,1-cyclobutanedicarboxylic acid of the formula: Ln2(C6H6O4)3nH2O, where n=4 for Y, Pr–Tm, n=5 for Yb,Lu, n=7 for La, Ce have been studied. The solid complexes have colours typical of Ln3+ ions. During heating in air they lose water molecules and then decompose to the oxides, directly (Y, Ce, Tm, Yb) or with intermediate formation. The thermal decomposition is connected with released water (313–353 K), carbon dioxide, hydrocarbons(538–598 K) and carbon oxide for Ho and Lu. When heated in nitrogen they dehydrate to form anhydrous salt and next decompose to the mixture of carbon and oxides of respective metals. IR spectra of the prepared complexes suggest that the carboxylate groups are bidentate chelating.

Restricted access

Abstract  

The conditions of the formation of rare earth(III) 2,5-dihydroxybenzoates have been studied; their compositions and solubilities in water at 293 K have been determined. The IR spectra of the anhydrous complexes with the general formula Ln(C7H5O4)3 have been recorded and their thermal decompositions in static air determined. During heating the anhydrous complexes of Y, Pr-Lu decompose to the oxides Ln2O3, Pr6O11 and Tb4O7 with formation of the intermediate Ln2(C7H4O4)3. The lanthanum complex decomposes to the oxide in three steps forming La2(C7H4O4)3 and La2O2CO3 as intermediates and the Ce(III) complex decomposes directly to CeO2. The properties of rare earth 2,5- and 2,4-dihydroxybenzoates have been compared.

Restricted access

Abstract  

4-Chloro-2-methoxybenzoates of light lanthanides(III) were obtained as mono-, di-or trihydrates with metal to ligand ratio of 1:3 and general formula Ln(C8H6ClO3)3·nH2O, where n=1 for Ln=Ce, Pr, n=2 for Ln=Nd, Sm, Eu, Gd and n=3 for Ln=La. The complexes were characterized by elemental analysis, IR spectra, thermogravimetric studies, X-ray diffraction and magnetic measurements. The carboxylate group appears to be a symmetrical bidentate, chelating ligand. All complexes seem polycrystalline compounds. Their thermal stabilities were determined in air. When heated they dehydrate to form anhydrous salts which next are decomposed to the oxides of the respective metals. The solubilities of light lanthanide(III) 4-chloro-2-methoxybenzoates in water at 293 K are of the order of 10−5 mol dm−3. The magnetic moments were determined over the range of 77–300 K. They obey the Curie-Weiss law. The values of μeff calculated for all compounds are close to those obtained for Ln3+ by Hund and Van Vleck. The results indicate that there is no influence of the ligand field of 4f electrons on lanthanide ions and the metal ligand bonding is mainly electrostatic in nature.

Restricted access

Abstract

The complexes of rare earth elements with 2,3-naphthalenedicarboxylic acid of the formula: Ln2(C12H6O4)3·nH2O, where Ln = La(III)-Lu(III) and Y(III); n = 3 for La(III), Ce(III); n = 6 for Pr(III)-Yb(III) and Y(III) and n = 5 for Lu(III) have been synthesized and characterized by elemental analysis, IR spectroscopy, thermal analysis (TG, DTG, DTA and TG-FTIR) and X-ray analysis. They are sparingly soluble in water and stable at room temperature. During heating in air atmosphere, they lose all water molecules in several steps, generally in two or three steps, except for the La(III) and Ce(III) complexes which lose all water molecules in one step. The anhydrous compounds are stable up to about 773 K and then decompose to corresponding oxides. The thermal decomposition is connected with the release of water molecules (443 K), carbon dioxide (713 K) and hydrocarbons.

Open access
Journal of Thermal Analysis and Calorimetry
Authors:
A. Garrido Pedrosa
,
M. Câmara
,
F. Borges
,
H. de Souza
,
H. Scatena Jr
,
D. Melo
, and
L. Zinner

Abstract  

Complexes of rare earth trifluoroacetates (TFA) with 4-methylmorpholine-N-oxide (MMNO) of composition Ln(TFA)33MMNO (Ln=Eu, Dy, Ho, Er, Yb and Y) were synthesized and characterized by elemental analysis data, complexometric titration with EDTA, IR absorption spectra, thermogravimetric analyses and differential scanning calorimetry (DSC) in N2 atmosphere. Infrared spectroscopy data revealed that the MMNO molecules are bound to the central ion through the oxygen of NO groups. These data suggest that the trifluoracetate groups are also coordinated. Thermogravimetric curves indicate that the decomposition of MMNO begins at approximately 350 K and results in Ln2O3 residue at around 1170 K. A theoretical kinetic study was carried out using a QBASIC program with the TG input data for the Dy complex.

Restricted access

Abstract  

The thermal decomposition behaviour of the complexes of rare earth metals with histidine: RE(His)(NO3)3 H2O (RE=La—Nd, Sm—Lu and Y; His=histidine) was investigated by means of TG-DTG techniques. The results indicated that the thermal decomposition processes of the complexes can be divided into three steps. The first step is the loss of crystal water molecules or part of the histidine molecules from the complexes. The second step is the formation of alkaline salts or mixtures of nitrates with alkaline salts after the histidine has been completely lost from the complexes. The third step is the formation of oxides or mixtures of oxides with alkaline salts. The results relating to the three steps indicate that the stabilities of the complexes increase from La to Lu.

Restricted access