Search Results

You are looking at 1 - 10 of 20 items for :

  • "convergence rate" x
  • All content x
Clear All

The paper aims to develop a model of nonlinear economic growth — with simple assumptions — which explains both Japan’s S -shape convergence path and the UK’s declining path toward the US between 1870–2000, and the development of other countries, as well as post-war reconstruction. According to the model, progress in stock of knowledge is formed by a quadratic formula of the relative development of follower countries.The model draws on four recent theories. Firstly, Romer’s theory, which approaches a country’s level of development by using the number of its products (Romer 1990), secondly, Jones’ idea theory with a slight modification (Jones 2004), third, the theory of quality of institutions, which determines economic performance (North 1993), and finally, the theory of physical and human capital. The first part of the paper sets up the production function, the second determines the growth rate and analyses the reconstruction path, while the third draws up model forecasts.

Restricted access

Summary  

We provide uniform rates of convergence in the central limit theorem for linear negative quadrant dependent (LNQD) random variables. Let \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\{X_{n},\allowbreak n\ge1\}$ \end{document} be a LNQD sequence of random variables with \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $EX_{n}=0$ \end{document}, set \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $S_{n}=\sum_{j=1}^{n}X_{j}$ \end{document} and \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $B_{n}^{2}=\text{Var}\, (S_{n})$ \end{document}. We show that \begin{gather*} \sup_{x} \left|P\left(\frac{S_{n}}{B_{n}}<x\right)-\Phi(x)\right|= O\bigg(n^{-\delta/(2+3\delta)}\vee \frac{n^{3\delta^{2}/(4+6\delta)}}{B^{2+\delta}_{n}} \sum_{i=1}^{n} E{|X_{i}|}^{2+\delta}\bigg) \end{gather*} under finite \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $(2+\delta)$ \end{document}th moment and a power decay rate of covariances. Moreover, by the truncation method, we obtain a Berry--Esseen type estimate for negatively associated (NA) random variables with only finite second moment. As applications, we obtain another convergence rate result in the central limit theorem and precise asymptotics in the law of the iterated logarithm for NA sequences, and also for LNQD sequences.

Restricted access

In this paper, we study the conjugate Gradient iterative method applied on a discrete Stokes problem obtain by adding in the second equation a stabilising term depending on a parameter a. We also establish the convergence rate as a function of a.

Restricted access

Summary Let F q be a finite field with q elements. We consider formal Laurent series of F q -coefficients with their continued fraction expansions by F q -polynomials. We prove some arithmetic properties for almost every formal Laurent series with respect to the Haar measure. We construct a group extension of the non-archimedean continued fraction transformation and show its ergodicity. Then we get some results as an application of the individual ergodic theorem. We also discuss the convergence rate for limit behaviors.

Restricted access

124 347 359 Hanson, D. L. , Some results relating moment generating function and convergence rates in the law of large numbers. Ann

Restricted access

. (2007): Is Convergence Rate Monotonic?. Acta Oeconomica , 57(3):247–261. Tarján T. Is Convergence Rate Monotonic? Acta Oeconomica

Restricted access