Search Results

You are looking at 1 - 10 of 106 items for :

  • "convolutions" x
  • Refine by Access: All Content x
Clear All

many fields [ 10 ]. In the case of motion analysis, the most accurate method is using Convolutional Neural Network (CNN) as it is shown in [ 11 ] and [ 12 ]. They compare it with SVM and Random Forest and prove superiority of CNN in terms of recognition

Open access

Abstract  

We study the translation and the convolution associated to the discrete Jacobi transformation on complex sequences of slow and rapid growth. Also we establish new topological properties for these spaces of sequences.

Restricted access

Summary This paper studies annihilating properties of operators generated by spherical convolution over the unit sphere O2q of Cq. Its specific aim is to answer the following question: given a complex number ?, |?|=1, to determine what functions of L 2(O2q) have zero average over every section  Ow ?,q  :={ z ?O2q: <z,w> = ?} of O2q . Here, <.,.>stands for the usual inner product of Cq.

Restricted access

In recent years the uniform distributions and their convolutions find such applications that are relevant to geodesy-more precisely-to the modern theory of errors: (i) The convolutions of uniform distributions have been applied to the error distribution arising from data processing; (ii) Within the framework of geodesy, outliers were assumed to be distributed with uniform distribution. Bearing in mind these new developments and integrating these isolated topics, in this paper new closed formulae for the probability density and distribution functions of the sum of independent uniform random variables with unequal supports are derived. A brief outline of the relevance of convolutions of uniform distributions to the theory of errors related to astronomy and geodesy is given in historical setting. Along with these, the origin of uniform distribution is discussed with special emphasis on the root of the theory of errors.

Restricted access

Реэюме  

Для 2π-периодических функций fL p(
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{T}$$ \end{document}
), 1 ≤ p < ∞, σV(
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{T}$$ \end{document}
и gL(
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{T}$$ \end{document}
) рассмамриваюмся свермки
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$(f*d\sigma )_T (x) = \int_0^{2\pi } {f(x - t)d\sigma (t), } (f*g)_T (x) = \int_0^{2\pi } {f(x - t)g(t)dt.}$$ \end{document}
. Найдено необходимое и досмамочное условие на функцию σV(
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{T}$$ \end{document}
), или gL(
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{T}$$ \end{document}
), при комором множесмво эначений соомвемсмвюшего операмора свермки, определенного на просмрансмве L p(
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{T}$$ \end{document}
), пломно в просмрансмве L p(
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{T}$$ \end{document}
), 1 ≤ p < ∞. Аналогичный реэульмам получен для операморов двоичной свермки
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$(f*g)_2 (x) = \int_0^1 {f(x \oplus t)g(t)dt,}$$ \end{document}
где ⊕ — операция двоичного сложения на омреэке [0,1). Кроме мого, докаэано, чмо в просмрансмвах L p(
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{T}$$ \end{document}
), 1 ≤ p < ∞, и C(
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{T}$$ \end{document}
) не сушесмвуем баэисов иэ сдвигов одной функции. Аналогичный реэульмам получен для просмрансмв L p[0,1]*, 1 ≤ p < ∞, и C[0,1]* омносимельно двоичных сдвигов, где [0,1]* — модифицированный омреэок [0,1]. QDокаэано макже, чмо в просмрансмве L(ℝ+) не суъесмвуем баэиса иэ двоичных сдвигов одной функции.
Restricted access
слЕДУь п. к. сИккЕМА, Мы ИсслЕДУЕМ АппРОксИМ АцИОННыЕ сВОИстВА ОпЕРАтОРОВ
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$u_\varrho ^\beta (f,x) = \frac{1}{{\beta _\varrho }}\int\limits_{ - \infty }^\infty {f(x - t)\beta ^\varrho (t) dt(\varrho \to \infty ).}$$ \end{document}
Restricted access