Search Results

You are looking at 1 - 9 of 9 items for :

  • "crystolysis reactions" x
  • All content x
Clear All

Abstract  

Aspects of the theories that are conventionally and widely used for the kinetic analyses of thermal decompositions of solids, crystolysis reactions, are discussed critically. Particular emphasis is placed on shortcomings which arise because reaction models, originally developed for simple homogeneous reactions, have been extended, without adequate justification, to represent heterogeneous breakdowns of crystalline reactants. A further difficulty in the mechanistic interpretation of kinetic data obtained for solid-state reactions is that these rate measurements are often influenced by secondary controls. These include: (i) variations of reactant properties (particle sizes, reactant imperfections, nucleation and growth steps, etc.), (ii) the effects of reaction reversibility, of self-cooling, etc. and (iii) complex reaction mechanisms (concurrent and/or consecutive reactions, melting, etc.). A consequence of the contributions from these secondary rate controls is that the magnitudes of many reported kinetic parameters are empirical and results of chemical significance are not necessarily obtained by the most frequently used methods of rate data interpretation. Insights into the chemistry, controls and mechanisms of solid-state decompositions, in general, require more detailed and more extensive kinetic observations than are usually made. The value of complementary investigations, including microscopy, diffraction, etc., in interpreting measured rate data is also emphasized. Three different approaches to the formulation of theory generally applicable to crystolysis reactions are distinguished in the literature. These are: (i) acceptance that the concepts of homogeneous reaction kinetics are (approximately) applicable (assumed by many researchers), (ii) detailed examination of all experimentally accessible aspects of reaction chemistry, but with reduced emphasis on reaction kinetics (Boldyrev) and (iii) identification of rate control with a reactant vaporization step (L’vov). From the literature it appears that, while the foundations of the widely used model (i) remain unsatisfactory, the alternatives, (ii) and (iii), have not yet found favour. Currently, there appears to be no interest in, or discernible effort being directed towards, resolving this unsustainable situation in which three alternative theories remain available to account for the same phenomena. Surely, this is an unacceptable and unsustainable situation in a scientific discipline and requires urgent resolution?

Restricted access

Melting and thermal decompositions of solids

An appraisal of mechanistic interpretations of thermal processes in crystals

Journal of Thermal Analysis and Calorimetry
Author: Andrew K. Galwey

Abstract

This analysis of interface phenomena considers the alternative processes that may result from heating a crystal, particularly including thermal decomposition, involving chemical reactions, and melting, involving loss of long-range structural order. Such comparisons are expected to provide insights into the factors that determine and control the different types of thermal changes of solids. The survey also critically reviews some theoretical concepts that are currently used to describe solid-state thermal reactions and which provides relevant background information to models used in a recently proposed theory of melting. Probable reasons for the current lack of progress in characterizing the factors that control chemical changes and mechanisms of thermal reactions in solids are also discussed.

It is concluded that some aspects of the macro properties of reaction interfaces in crystal reactions have been adequately described, including geometric representations of interface advance during nucleation and growth processes. In contrast, relatively very little is known about the detailed (micro) processes occurring within these active, advancing interfacial zones: reactant/product contacts during chemical reactions and crystal/melt contacts during fusion. From the patterns of behaviour distinguished, a correlation scheme, based on relative stabilities of crystal structures and components therein, is proposed, which accounts for the four principal types of thermal changes that occur on heating solids: sublimation, decomposition, crystallographic transformation or melting. Identifications of the reasons for these different consequences of heating are expected to contribute towards increasing our understanding of each of the individual processes mentioned and to advance theory of the thermal chemistry of solids, currently enjoying a prolonged quiescent phase.

Restricted access

Abstract  

Theoretical models for the melting of solids are inadequate because relatively little is known about the structures of liquids formed and the factors that control this phase transformation. In the present analysis of fusion phenomenon, usually considered to be a physical change, it is pointed out that, for many solids (e.g., metals and some simple ionic salts) melting involves the redistribution of primary valence bonds. Accordingly, this review includes examination some more chemical aspects of the controls of melting. The available data show that enthalpy and density changes during liquefaction and solidification of the metallic elements and of the alkali halides are small. From quantitative consideration of these values, it is concluded that ordered packing arrangements of atoms, ions, or molecules, comparable with those of crystals, must be extensively retained into the melt. The energy and molar volume changes on melting are too small to allow significant departure, in the liquid, from the regular, efficient space-filling arrays that characterize crystalline solids. The set/liq model for melting (dynamic equilibria between alternative ordered structures) is proposed to account for the properties of the liquid. A detailed and critical comparison of melting with solid state decompositions considers the kinetics and the mechanisms of the changes that occur during the supply/removal of energy to/from the melt/crystal contact interface. Other relevant aspects of melting are discussed including the factors that determine the magnitudes of the melting points of individual solids.

Restricted access

Abstract  

This critical survey argues that the theory, conventionally used to interpret kinetic data measured for thermal reactions of initially solid reactants, is not always suitable for elucidating reaction chemistry and mechanisms or for identifying reactivity controls. Studies of solid-state decompositions published before the 1960s usually portrayed the reaction rate as determined by Arrhenius type models closely related to those formulated for homogeneous rate processes, though scientific justifications for these parallels remained incompletely established. Since the 1960s, when thermal analysis techniques were developed, studies of solid-state decompositions contributed to establishment of the new experimental techniques, but research interest became redirected towards increasing the capabilities of automated equipment to collect, to store and later to analyze rate changes for selected reactions. Subsequently, much less attention has been directed towards chemical features of the rate processes studied, which have included a range of reactants that is much more diverse than the simple solid-state reactions with which early thermokinetic studies were principally concerned. Moreover, the theory applied to these various reactants does not recognize the possible complexities of behaviour that may include mechanisms involving melting and/or concurrent/consecutive reactions, etc. The situation that has arisen following, and attributable to, the eclipse of solid-state decomposition studies by thermal analysis, is presented here and the consequences critically discussed in a historical context. It is concluded that methods currently used for kinetic and mechanistic investigations of all types of thermal reactions indiscriminately considered by the same, but inadequate theory, are unsatisfactory. Urgent and fundamental reappraisal of the theoretical foundations of thermokinetic chemical studies is now necessary and overdue. While there are important, but hitherto unrecognized, delusions in thermokinetic methods and theories, an alternative theoretical explanation that accounts for many physical and chemical features of crystolysis reactions has been proposed. However, this novel but general model for the thermal behaviour and properties of solids has similarly remained ignored by the thermoanalytical community. The objective of this article is to emphasize the now pressing necessity for an open debate between these unreconciled opinions of different groups of researchers. The ethos of science is that disagreement between rival theories can be resolved by experiment and/or discussion, which may also strengthen the foundations of the subject in the process. As pointed out below, during recent years there has been no movement towards attempting to resolve some fundamental differences of opinion in a field that lacks an adequate theory. This should be unacceptable to all concerned. Here some criticisms are made of specific features of the alternative reaction models available with the stated intention of provoking a debate that might lead to identification of the significant differences between the currently irreconciled views. This could, of course, attract the displeasure of both sides, who will probably criticise me severely. Because I intend to retire completely from this field soon, it does not matter to me if I am considered to be ‘wrong’, if it contributes to us all eventually agreeing to get the science ‘right’.

Restricted access

-6031(00)00445-7 . 23. Vyazovkin S . Reply to “What is meant by the term ‘variable activation energy’ when applied in the kinetics analyses of solid state decompositions (crystolysis reactions)?” . Thermochim Acta

Restricted access

in the kinetic analyses of solid state decompositions (crystolysis reactions)? . Therm Acta. 397 1–2 249 – 268 10.1016/S0040-6031(02)00271-X . 13. Jennings , HM 2008

Open access

.1080/014423500229855 . 35. Vyazovkin , S . 2003 . Reply to What is meant by the term ‘variable activation energy’ when applied in the kinetic analyses of solid state decompositions (crystolysis reactions)? . Thermochim Acta . 397

Restricted access

Theory of solid-state thermal decomposition reactions

Scientific stagnation or chemical catastrophe? An alternative approach appraised and advocated

Journal of Thermal Analysis and Calorimetry
Author: Andrew K. Galwey

applied in the kinetic analyses of solid state decompositions (crystolysis reactions)? . Thermochim Acta 397 : 249 – 268 10.1016/S0040-6031(02)00271-X . 9. Galwey , AK 2003

Restricted access