Search Results

You are looking at 1 - 10 of 1,010 items for :

  • Refine by Access: All Content x
Clear All

Abstract  

TG-DTA analysis method was used to study the curing behaviour of urea-formaldehyde (UF) adhesive resins in the presence of a wood substrate. The cure process was followed using a Setaram labsysTM instrument in flowing nitrogen atmosphere by varying the ratio of resin and wood. Resin cure was catalysed with 2% of NH4Cl. Curing tests were performed in the open standard platinum crucibles and in the sealed glass capsules. To characterise the reactivity of curing system, the peak temperatures in DTA curve and the mass loss values in TG curve were taken as the apparent indices. The main attention was paid to phenomena which actually take place in curing of UF resins during manufacturing of particleboards. Reactivity of the curing system depends mostly on methylol content of resin and can be adequetly evaluated by the maximum temperature of exothermic peak. The wood substrate has a substantial influence on the resin and water diffusion in system causing the changes in water/resin separation and water evaporation conditions. The water movement in curing adhesive joint was a confusing parameter in determining the peak positions. The rate of mass loss on a wood substrate is higher as compared to curing UF resin alone.

Restricted access

Abstract  

Polyimides have aromatic moieties in the backbone structure which are responsible for their increased thermal stability. If phosphorus is introduced in the main chain structure of polyimides, there is further improvement in the thermal stability. This has been proved by the work carried out in our group. The polyimide having amine termination can be used for crosslinking of epoxy resins. In the present study amine terminated phosphorus containing nadicimide were taken as curing agent for DGEBA resins. The curing characteristics of DGEBA resin were studied by DSC using different amounts of nadic endcapped phosphorylated amines. DSC thermogram showed the heat of polymerization was lower as compared to system cured with aromatic amines.

Restricted access

Abstract  

The present investigation focuses on matching cure characteristics of EPDM rubber compound and polyurethane (PU) coating using temperature modulated and pressure differential scanning calorimetry (TMDSC, PDSC). TMDSC provides a detailed and better understanding of the curing process of model rubber system as well as complex automotive rubber compounds. The low level of unsaturation present in EPDM, results in the small heat of vulcanization (2–5 J g–1), which is difficult to accurately measure using conventional differential scanning calorimetry (DSC). Thus, curing of highly filled EPDM compound was investigated using TMDSC. The kinetics of PU curing was monitored using pressure DSC (PDSC), and heat of curing was determined as 4.2 J g–1 at 10C min–1 heating rate. It is found that complex automotive compounds and the PU coating are curing simultaneously.

Restricted access

Abstract  

Condensation of dimethylol-urea (DMU) mixed with urea (U) and collagen hydrolysate (H), obtained through enzymatic hydrolysis of chrome-tanned leather waste, without added acid curing agents in the solid phase was studied through DSC and TG techniques in a temperature interval up to 220°C. Among both techniques TG proved be more useful.While the DMU+U mix produced methylene-oxide (-CH2-O-CH2-) and methylene (-CH2-) bridges at a ratio of approx. 1:1, urea substituted for collagen hydrolysate increased the proportion of more stable methylene bridges to methylene-oxide bridges to a ratio of approx. 2:1. Methylene-oxide bridges are considered to be the main potential sources of formaldehyde emissions from cured urea-formaldehyde type adhesives, and thus the use of collagen hydrolysate in preparation of urea-formaldehyde adhesive types is a suitable way how to make such adhesives more environmental friendly.

Restricted access

Abstract  

The curing behaviour of diglycidyl ether of bisphenol-A (DGEBA) was investigated by the dynamic differential scanning calorimetry using varying molar ratios of aromatic imide-amines and 4,4′-diaminodiphenylsulfone (DDS). The imide-amines were prepared by reacting 1 mole of naphthalene 1,4,5,8-tetracarboxylic dianhydride (N) and 4,4′-oxodiphthalic anhydride (O) with 2.5 moles of 4,4′-diaminodiphenyl ether (E) or 4,4′-diaminodiphenyl methane (M) or 4,4′-diaminodiphenylsulfone (S) and designated as NE/OE or NM/OM or NS/OS. The mixture of the imide-amines and DDS at ratio of 0:1, 0.25:0.75, 0.5:0.5, 0.75:0.25 and 1:0 were used to investigate the curing behaviour of DGEBA. A single exotherm was observed on curing with mixture of imide-amines and DDS. This clearly shows that the two amines act as co-curing agents. Curing temperatures were higher with imide-amines having sulfone linkage irrespective of anhydride. Curing of DGEBA with mixture of imide-amines and or DDS resulted in a decrease in characteristic curing temperatures. The thermal stability of the isothermally cured resins was also evaluated using dynamic thermogravimetry in a nitrogen atmosphere. The char yield was higher in case of resins cured imide-amines based on N and E. The activation energy of decomposition and integral procedural decomposition temperature were also calculated from the TG data.

Restricted access

Abstract  

The curing reaction of a thermosetting system is investigated by DSC and temperature modulated DSC (TMDSC). When the material vitrifies during curing, the reaction becomes diffusion controlled. The phase shift signal measured by TMDSC includes direct information on the reaction kinetics. For long periods the phase shift is approximately proportional to the partial temperature derivative of the reaction rate. This signal is very sensitive for changes in the reaction kinetics. In the present paper an approach to determine the diffusion control influence on the reaction kinetics from the measured phase shift is developed. The results are compared with experimental data. Further applications of this method for other reactions are proposed.

Restricted access

Summary The curing behaviour of commercial UF and MUF resins, stored at room temperature nearly up to gelation, is studied by simultaneous TG-DTA technique and structural changes of resins are also followed during aging. On the basis of 13C NMR spectra, the main chemical reaction during UF resin storage is the formation of methylenes and dimethylene ethers linked to secondary amino groups. Aging of resins results in a decrease of cure rate which is related to lower concentration of active functional groups and decrease in molecular mobility. On DTA curve, the resin with higher content of methylol groups reveals the curing exotherm earlier. With decreasing methylol content during storage, the peak maximum of exotherm is shifted to higher temperature value. Advanced polycondensation and sedimentation processes during storage produce partly locked in macromolecule structure water, and the water evaporation endotherm on DTA curve shifts to considerably higher temperature. The aged MUF resins are chemically less changed than UF resins and the aging process mainly involves noncovalent network formation due to complex molecular structure.

Restricted access

Abstract  

An alkyd/melamine resin mixtures are mainly used in industrial baking enamels. The aim of this work was to study the curing behaviour of alkyds based on dehydrated castor oil and soybean oil with melamine resin by differential scanning calorimetry (DSC). The kinetic parameters obtained by the transformation of dynamic DSC results into isothermal data through Ozawa kinetic model are in good agreement with those determined by the isothermal DSC experiments. The apparent degree of curing, determined by DSC measurements and sol/gel method, has a pronounced effect on the hardness of the resultant coating film.

Restricted access

Abstract  

Diglycidyl ether of bisfenol-A (DGEBA)/polybenzyl methacrylate (PBzMA) blends cured with 4,4’-diaminodiphenylmethane (DDM) were studied. Miscibility, phase separation, cure kinetics and morphology were investigated through differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Non-reactive DGEBA/PBzMA blends are miscible over the whole composition range. The addition of PBzMA to the reactive (DGEBA+DDM) mixture slows down the curing rate, although the reaction mechanism remains autocatalytic. On curing, initially miscible (DGEBA+DDM)/PBzMA blends phase separate, arising two glass transition temperatures that correspond to a PBzMA-rich phase and to epoxy network. Cured epoxy/PBzMA blends present different morphologies as a function of the PBzMA content.

Restricted access

Abstract  

The curing and adsorption behaviors of an epoxy/amidoamine system under the influence of iron, aluminum, and zinc oxides are studied by using differential scanning calorimetry (DSC) and diffuse reflectance infrared spectroscopy (DRIFT). From DRIFT, it is obtained that the amidoamine curing agent is preferentially adsorbed on the three metal oxide surfaces. The amount of amidoamine adsorbed is in the order of iron oxide>zinc oxide>aluminum oxide. Moreover, the iron and zinc oxides adsorb resins more firmly than the aluminum oxide. The results of DSC analyses indicate that more amine related exotherms are found in the specimen filled with the iron oxide but more amide related exotherms are found in the zinc oxide added specimens and they are related to the difference in the preferential adsorption found on three metal oxides. The curing characteristics are also changed in the presence of metallic fillers and the greatest change is obtained from the specimen containing the iron oxide.

Restricted access